论文标题

在隐式大型模拟中2D太阳对流的数值收敛

Numerical convergence of 2D solar convection in implicit large-eddy simulations

论文作者

Nogueira, H. D., Guerrero, G., Smolarkiewicz, P. K., Kosovichev, A. G.

论文摘要

大涡模拟(LES)和隐式LE(Iles)是高雷诺数(RE)处湍流的不可行的直接数值模拟(DNS)的明智和负担得起的替代方案。但是,对于几乎没有观察性约束的系统,确定这些策略是否充分捕获系统物理学是一个巨大的挑战。在这里,我们通过分析2D中动荡对流的静脉纤维的数值收敛来解决这个问题,并在$ 64^2 $和2048^2 $网格点之间进行分辨率,并估计其有效的粘度,从而有效的Reynolds数量在$ 1 $和$ \ sim10^4 $之间。我们模型的热力学结构类似于太阳能内部,包括辐射区和对流区的一部分。在对流层中,Iles解决方案以$ \ ge 512^2 $网格点收敛,这是流动及其功率谱的整体属性所证明的。最重要的是,我们发现即使是$ 128^2 $网格点的分辨率,Re $ \ sim10 $,也足以准确捕获大型的动力学。这是iles方法的结果,允许在低分辨率和高分辨率的模拟中,这些量表中包含的能量相同。在较小的密度尺度高度驱动数值网格未解决的细小结构的形成的区域中需要特别注意。在稳定的层中,我们发现了内部重力波的激发,但是需要高分辨率来捕获它们的发育和相互作用。

Large-eddy simulations (LES) and implicit LES (ILES) are wise and affordable alternatives to the unfeasible direct numerical simulations (DNS) of turbulent flows at high Reynolds numbers (Re). However, for systems with few observational constraints, it is a formidable challenge to determine if these strategies adequately capture the physics of the system. Here we address this problem by analyzing numerical convergence of ILES of turbulent convection in 2D, with resolutions between $64^2$ and $2048^2$ grid points, along with the estimation of their effective viscosities, resulting in effective Reynolds numbers between $1$ and $\sim10^4$. The thermodynamic structure of our model resembles the solar interior, including a fraction of the radiative zone and the convection zone. In the convective layer, the ILES solutions converge for the simulations with $\ge 512^2$ grid points, as evidenced by the integral properties of the flow and its power spectra. Most importantly, we found that even a resolution of $128^2$ grid points, Re$\sim10$, is sufficient to capture the dynamics of the large scales accurately. This is a consequence of the ILES method allowing that the energy contained in these scales is the same in simulations with low and high resolution. Special attention is needed in regions with a small density scale height driving the formation of fine structures unresolved by the numerical grid. In the stable layer we found the excitation of internal gravity waves, yet high resolution is needed to capture their development and interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源