论文标题
重力双键解决方案的标量扰动
Scalar perturbation of gravitating double-kink solutions
论文作者
论文摘要
在这封信中,研究了一个二维(2D)重力量表模型。该模型支持有趣的双重解决方案,可以通过分析得出相应的度量解决方案。根据可调参数$ c $,该度量可以对称或不对称。得出了物理线性扰动的正常模式的Schrödinger样方程。随着$ C $的变化,有效的潜力可以具有一个或两个单一的障碍。如果$ c $大于临界值,则零模式将可以正常化,尽管出现了强烈的排斥性奇异性。在线性扰动上,双键解决方案始终是稳定的。
In this letter, a two-dimensional (2D) gravity-scalar model is studied. This model supports interesting double-kink solutions, and the corresponding metric solutions can be derived analytically. Depending on a tunable parameter $c$, the metric can be symmetric or asymmetric. The Schrödinger-like equation for normal modes of the physical linear perturbation is derived. As $c$ varies, the effective potential can have one or two singular barriers. If $c$ is larger than a critical value, the zero mode will be normalizable, despite of the appearance of a strong repulsive singularity. The double-kink solution is always stable against linear perturbations.