论文标题

广播方法满足数据流的网络编码

Broadcast Approach Meets Network Coding for Data Streaming

论文作者

Cohen, Alejandro, Médard, Muriel, Shamai, Shlomo

论文摘要

对于数据流应用程序,现有解决方案尚无法缩小高数据速率和低延迟之间的差距。这项工作认为,在混合延迟约束下,在单个通信通道上使用延迟反馈的情况下,数据流的问题。我们提出了一种新型的分层自适应因果关系线性网络编码(LAC-RLNC)方法,并具有正向误差校正。 LAC-RLNC是一种可变到可变量的编码方案,即,在可变的短块长度和速率上提出了可变恢复的信息数据。具体而言,对于具有基础和增强内容层的数据流,我们表征了由自适应因果分层编码方案管理的高维吞吐量折衷。基础层旨在满足严格的延迟约束,因为它包含允许流服务所需的数据。然后,发件人可以通过将重新汇率调整为先验和后部作为增强层来管理第二层的吞吐量 - 列表权衡,其中包含剩余数据以增强流媒体服务的质量,这是放宽延迟约束的。我们从数值上表明,分层网络编码方法可以大大提高性能。我们证明,与非层次方法相比,LAC-RLNC的平均值和最大延迟为三个因子,接近下限的基础层,以及增强层的二倍。

For data streaming applications, existing solutions are not yet able to close the gap between high data rates and low delay. This work considers the problem of data streaming under mixed delay constraints over a single communication channel with delayed feedback. We propose a novel layered adaptive causal random linear network coding (LAC-RLNC) approach with forward error correction. LAC-RLNC is a variable-to-variable coding scheme, i.e., variable recovered information data at the receiver over variable short block length and rate is proposed. Specifically, for data streaming with base and enhancement layers of content, we characterize a high dimensional throughput-delay trade-off managed by the adaptive causal layering coding scheme. The base layer is designed to satisfy the strict delay constraints, as it contains the data needed to allow the streaming service. Then, the sender can manage the throughput-delay trade-off of the second layer by adjusting the retransmission rate a priori and posterior as the enhancement layer, that contains the remaining data to augment the streaming service's quality, is with the relax delay constraints. We numerically show that the layered network coding approach can dramatically increase performance. We demonstrate that LAC-RLNC compared with the non-layered approach gains a factor of three in mean and maximum delay for the base layer, close to the lower bound, and factor two for the enhancement layer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源