论文标题
在Weyl-nagy可区分函数的类别中,通过傅立叶总和近似具有较高的平滑指数
Approximation by Fourier sums in classes of Weyl--Nagy differentiable functions with high exponent of smoothness
论文作者
论文摘要
我们建立均匀度量中最小近似值的渐近估计,按傅立叶级别$ n-1 $ $ n-1 $ $ n-1 $的$2π$ - periodic weyl- nag-nagy-nagial-nagiby-nagiagy函数,$ w^r_ {β,p},1 \ le p \ le p \ le p \ le f \ le \ le \ le floom in \ mathbb in \ mathbb} in \ mathbb} (r-1 \ ge \ sqrt {n})$。我们在空间的指标$ l_p,1 \ le p \ le \ infty,功能类别$ w^r_ {β,1} $中获得类似的估计。
We establish asymptotic estimates for the least upper bounds of approximations in the uniform metric by Fourier sums of order $n-1$ of classes of $2π$-periodic Weyl--Nagy differentiable functions, $W^r_{β,p}, 1\le p\le \infty, β\in\mathbb{R},$ for high exponents of smoothness $r\ (r-1\ge \sqrt{n})$. We obtain similar estimates in metrics of the spaces $L_p, 1\le p\le\infty,$ for functional classes $W^r_{β,1}$.