论文标题

基于张量的人类​​运动预测的回归方法

A Tensor Based Regression Approach for Human Motion Prediction

论文作者

Gril, Lorena, Wedenig, Philipp, Torkar, Chris, Kleb, Ulrike

论文摘要

协作机器人系统将是当前和未来工业应用的关键促进技术。此类应用的主要方面是确保人类的安全。为了检测危险情况,当前的市售机器人系统依赖于与同事的直接接触。为了进一步推进这项技术,正在为开发此类系统的预测能力做出了许多努力。使用运动跟踪传感器和姿势估计系统结合了足够的预测模型,可以预测人与机器人之间有害碰撞的潜在发作。根据提供的预测信息,机器人系统可以通过调整速度或位置来避免身体接触。这种系统的一种潜在方法是使用人工神经网络等机器学习方法进行人类运动预测。在我们的方法中,过去几秒钟的运动模式用于通过应用线性张量回归模型来预测未来的运动模式,这是根据动态时间旋转获得的运动序列之间的相似性度量来选择的。为了测试和验证我们提出的方法,通过运动捕获系统记录了工业伪装配任务,为每个人类关节提供了独特的可追溯笛卡尔坐标$(x,y,z)$。与组装任务相关的重复人体运动的预测,其数据的长度差异很大,并且具有高度相关的变量。

Collaborative robotic systems will be a key enabling technology for current and future industrial applications. The main aspect of such applications is to guarantee safety for humans. To detect hazardous situations, current commercially available robotic systems rely on direct physical contact to the co-working person. To further advance this technology, there are multiple efforts to develop predictive capabilities for such systems. Using motion tracking sensors and pose estimation systems combined with adequate predictive models, potential episodes of hazardous collisions between humans and robots can be predicted. Based on the provided predictive information, the robotic system can avoid physical contact by adjusting speed or position. A potential approach for such systems is to perform human motion prediction with machine learning methods like Artificial Neural Networks. In our approach, the motion patterns of past seconds are used to predict future ones by applying a linear Tensor-on-Tensor regression model, selected according to a similarity measure between motion sequences obtained by Dynamic TimeWarping. For test and validation of our proposed approach, industrial pseudo assembly tasks were recorded with a motion capture system, providing unique traceable Cartesian coordinates $(x, y, z)$ for each human joint. The prediction of repetitive human motions associated with assembly tasks, whose data vary significantly in length and have highly correlated variables, has been achieved in real time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源