论文标题

内部和外部耗散的顶点模型的线性粘弹性响应:正常模式分析

Linear Viscoelastic Response of the Vertex Model with Internal and External Dissipation: Normal Modes Analysis

论文作者

Tong, Sijie, Sknepnek, Rastko, Kosmrlj, Andrej

论文摘要

我们使用正常模式形式主义研究过度抑制线性反应状态中上皮组织力学的顶点模型的剪切流变学。我们考虑具有外部(例如细胞基底)和内部(例如细胞细胞)耗散机制的系统,并因机械和耗散力而导致细胞上的应力表达式。但是,此处开发的半分析方法是一般的,可以直接应用于研究具有内部和外部耗散的一系列软物质系统的线性响应。它涉及正常模式分解以计算系统的线性损耗和存储模量。具体而言,沿每个正常模式的位移会导致由于弹性变形和内部耗散而导致的应力,而内部耗散和内部耗散会因外部耗散而导致负载。每个正常模式都以特征性的松弛时间尺度做出响应,其流变行为可以描述为由于弹性应力和由于内部耗散应力而引起的标准线性固体元件的组合。然后,通过与单个正常模式相对应的所有粘弹性元件并行连接系统的总响应。这允许在所有驱动频率和集体激发的识别下完全表征系统的潜在复杂的线性流变响应。我们表明,由于存在或不存在Jeffreys元素,内部和外部耗散机制导致质化不同的流变行为,这在高驱动频率下尤其明显。因此,我们的发现强调了微观耗散机制在理解软材料和组织的流变行为方面的重要性。

We use the normal mode formalism to study the shear rheology of the vertex model for epithelial tissue mechanics in the overdamped linear response regime. We consider systems with external (e.g., cell-substrate) and internal (e.g., cell-cell) dissipation mechanisms, and derive expressions for stresses on cells due to mechanical and dissipative forces. The semi-analytical method developed here is, however, general and can be directly applied to study the linear response of a broad class of soft matter systems with internal and external dissipation. It involves normal mode decomposition to calculate linear loss and storage moduli of the system. Specifically, displacements along each normal mode produce stresses due to elastic deformation and internal dissipation, which are in force balance with loads due to external dissipation. Each normal mode responds with a characteristic relaxation timescale, and its rheological behavior can be described as a combination of a standard linear solid element due to elastic stresses and a Jeffreys model element due to the internal dissipative stresses. The total response of the system is then fully determined by connecting in parallel all the viscoelastic elements corresponding to individual normal modes. This allows full characterization of the potentially complex linear rheological response of the system at all driving frequencies and identification of collective excitations. We show that internal and external dissipation mechanisms lead to qualitatively different rheological behaviors due to the presence or absence of Jeffreys elements, which is particularly pronounced at high driving frequencies. Our findings, therefore, underscore the importance of microscopic dissipation mechanisms in understanding the rheological behavior of soft materials and tissues, in particular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源