论文标题
通过知识传输,数据增强和预处理,在小数据集上最大化音频事件检测模型的性能:一项消融研究
Maximizing Audio Event Detection Model Performance on Small Datasets Through Knowledge Transfer, Data Augmentation, And Pretraining: An Ablation Study
论文作者
论文摘要
X受体模型通过从Imagenet重量,预处理音频集和一条即时的数据增强管道的知识转移来达到ESC-50数据集上的最新(SOTA)精度,以进行音频事件检测。本文提出了一项消融研究,该研究分析了组件有助于提高性能和训练时间。还提出了一个较小的Xception模型,该模型接近SOTA性能,几乎三分之一的参数。
An Xception model reaches state-of-the-art (SOTA) accuracy on the ESC-50 dataset for audio event detection through knowledge transfer from ImageNet weights, pretraining on AudioSet, and an on-the-fly data augmentation pipeline. This paper presents an ablation study that analyzes which components contribute to the boost in performance and training time. A smaller Xception model is also presented which nears SOTA performance with almost a third of the parameters.