论文标题
替代基础的频谱,代数和归一化
Spectrum, algebraicity and normalization in alternate bases
论文作者
论文摘要
本文的第一个目的是提供有关交替碱基的代数特性$ \boldsymbolβ=(β_0,\ dots,β_{p-1})$确定SOFIC系统的信息。我们表明,必要的条件是$δ= \ prod_ {i = 0}^{p-1}β_i$是代数整数,并且所有基础$β_0,\ ldots,β_{p-1} $属于代数field $ {\ naterbraic field $ {\ mathbb q} $。另一方面,我们还提供了足够的条件:如果$δ$是PISOT数字和$β_0,\ ldots,β_{p-1} \ in {\ Mathbb Q} $ in {\ Mathbb Q}(δ)$,则与替代基本$ \BOLDSYMBOLβ=(β_0,β_0,\ dots,β________________”本文的第二个目的是提供关于弗鲁尼关于真实基础表示标准化的结果的类比。 We show that given an alternate base $\boldsymbolβ=(β_0,\dots,β_{p-1})$ such that $δ$ is a Pisot number and $β_0,\ldots,β_{p-1}\in {\mathbb Q}(δ)$, the normalization function is computable by a finite Büchi automaton, and furthermore, we有效地构建这样的自动机。我们研究中的一个重要工具是与替代基础相关的数字系统范围。 Erdős等人介绍了实际数字$δ> 1 $和字母$ a \ subset {\ mathbb z} $的频谱。出于我们的目的,我们使用$δ\在{\ Mathbb C} $和$ a \ subset {\ Mathbb C} $中的广义概念并研究其拓扑属性。
The first aim of this article is to give information about the algebraic properties of alternate bases $\boldsymbolβ=(β_0,\dots,β_{p-1})$ determining sofic systems. We show that a necessary condition is that the product $δ=\prod_{i=0}^{p-1}β_i$ is an algebraic integer and all of the bases $β_0,\ldots,β_{p-1}$ belong to the algebraic field ${\mathbb Q}(δ)$. On the other hand, we also give a sufficient condition: if $δ$ is a Pisot number and $β_0,\ldots,β_{p-1}\in {\mathbb Q}(δ)$, then the system associated with the alternate base $\boldsymbolβ=(β_0,\dots,β_{p-1})$ is sofic. The second aim of this paper is to provide an analogy of Frougny's result concerning normalization of real bases representations. We show that given an alternate base $\boldsymbolβ=(β_0,\dots,β_{p-1})$ such that $δ$ is a Pisot number and $β_0,\ldots,β_{p-1}\in {\mathbb Q}(δ)$, the normalization function is computable by a finite Büchi automaton, and furthermore, we effectively construct such an automaton. An important tool in our study is the spectrum of numeration systems associated with alternate bases. The spectrum of a real number $δ>1$ and an alphabet $A\subset {\mathbb Z}$ was introduced by Erdős et al. For our purposes, we use a generalized concept with $δ\in{\mathbb C}$ and $A\subset{\mathbb C}$ and study its topological properties.