论文标题
具有Equi Spaced外部来源的随机矩阵的通用性:生物表达合奏的案例研究
Universality for random matrices with equi-spaced external source: a case study of a biorthogonal ensemble
论文作者
论文摘要
我们证明了带有Equi Spaced外部源的随机Hermitian矩阵的边缘和批量普遍性。我们方法的一个特征是,我们既不使用Christoffel-Darboux类型公式,也不使用双元公式,这是证明准确可解决模型的普遍性结果的标准方法。该矩阵模型是生物联合集合的一个示例,这是一种特殊的确定点过程,其内核通常没有ChristOffel-Darboux类型公式或双核表示。我们的方法通常可以展示如何处理生物结合合奏的普遍性问题。
We prove the edge and bulk universality of random Hermitian matrices with equi-spaced external source. One feature of our method is that we use neither a Christoffel-Darboux type formula, nor a double-contour formula, which are standard methods to prove universality results for exactly solvable models. This matrix model is an example of a biorthogonal ensemble, which is a special kind of determinantal point process whose kernel generally does not have a Christoffel-Darboux type formula or double-contour representation. Our methods may showcase how to handle universality problems for biorthogonal ensembles in general.