论文标题

非组织周期方程的高频均质化

High-frequency homogenization of nonstationary periodic equations

论文作者

Dorodnyi, Mark

论文摘要

我们考虑一个椭圆形的差异操作员$ a_ \ varepsilon = - \ frac {d} {dx} g(x/\ varepsilon)\ frac {d} {dx} {dx} + \ varepsilon^{-2} $ L_2(\ Mathbb {r})$。对于具有Hamiltonian $ a_ \ varepsilon $的非组织schrödinger方程,以及与操作员$ a_ \ a_ \ varepsilon $的双曲方程,同质化问题的类似物,与运算符$ a_ \ varepsilon $的光谱频段相关的均质边缘(称为himegendized),称为sighentization high sighentization(所谓的sighentization)。对于具有特殊初始数据的这些方程式的Cauchy问题的解决方案,获得了$ L_2(\ Mathbb {r})$ - 小$ \ Varepsilon $的近似值。

We consider an elliptic differential operator $A_\varepsilon = - \frac{d}{dx} g(x/\varepsilon) \frac{d}{dx} + \varepsilon^{-2} V(x/\varepsilon)$, $\varepsilon > 0$, with periodic coefficients acting in $L_2(\mathbb{R})$. For the nonstationary Schrödinger equation with the Hamiltonian $A_\varepsilon$ and for the hyperbolic equation with the operator $A_\varepsilon$, analogs of homogenization problems, related to the edges of the spectral bands of the operator $A_\varepsilon$, are studied (the so called high-frequency homogenization). For the solutions of the Cauchy problems for these equations with special initial data, approximations in $L_2(\mathbb{R})$-norm for small $\varepsilon$ are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源