论文标题
半监督医学图像细分的跨层次对比学习和一致性约束
Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Segmentation
论文作者
论文摘要
半监督学习(SSL)旨在利用一些标记的图像和大量未标记的图像进行网络培训,对减轻医学图像分段中数据注释的负担有益。根据医学成像专家的经验,诸如纹理,光泽和光滑度之类的当地属性是识别诸如医学图像中病变和息肉等目标对象的非常重要的因素。在此激励的情况下,我们提出了一个跨层次的对比学习方案,以提高半监督医学图像分割中局部特征的表示能力。与现有图像,斑块和角度的对比度学习算法相比,我们设计的方法能够探索更复杂的相似性线索,即全球和本地斑块表示之间的关系特征。此外,为了充分利用跨层次的语义关系,我们设计了一种新颖的一致性约束,将斑块的预测与完整图像的预测进行了比较。借助跨层次的对比度学习和一致性约束,可以有效地探索未标记的数据,以提高两个医疗图像数据集的细分性能,分别用于息肉和皮肤病变细分。我们的方法代码可用。
Semi-supervised learning (SSL), which aims at leveraging a few labeled images and a large number of unlabeled images for network training, is beneficial for relieving the burden of data annotation in medical image segmentation. According to the experience of medical imaging experts, local attributes such as texture, luster and smoothness are very important factors for identifying target objects like lesions and polyps in medical images. Motivated by this, we propose a cross-level contrastive learning scheme to enhance representation capacity for local features in semi-supervised medical image segmentation. Compared to existing image-wise, patch-wise and point-wise contrastive learning algorithms, our devised method is capable of exploring more complex similarity cues, namely the relational characteristics between global and local patch-wise representations. Additionally, for fully making use of cross-level semantic relations, we devise a novel consistency constraint that compares the predictions of patches against those of the full image. With the help of the cross-level contrastive learning and consistency constraint, the unlabelled data can be effectively explored to improve segmentation performance on two medical image datasets for polyp and skin lesion segmentation respectively. Code of our approach is available.