论文标题

在尺寸降低的静态球体对称空间中的Unruh-Dewitt检测器

Unruh-DeWitt detector in dimensionally-reduced static spherically symmetric spacetimes

论文作者

Tjoa, Erickson, Mann, Robert B.

论文摘要

我们研究了在任意的静态球形对称空间中与无质量标量场相互作用的Unruh-Dewitt检测器的动力学,该静态静态对称空间的指标的特征是单个度量函数$ f(r)$。为了获得清洁的物理见解,我们在(1+1)维度中采用了Unruh-Dewitt模型的衍生耦合变体,在(1+1)尺寸中,强大的共形技术可以为真空两点函数提供封闭形式的表达式。由于形式主义的普遍性,我们将能够研究一类非常一般的静态球形对称(SSS)背景。我们选择了三个示例来说明我们的方法:(1)非细海沃德黑洞,(2)最近发现的$ d \至4 $的高斯黑洞的极限,以及(3)“黑色弹跳”度量标准,internations interlesrates Schwarzschschild schwarzschild holes黑洞和可刺眼的蠕虫。我们还表明,与广义Hartle-Hawking真空相关的衍生耦合Wightman函数可以使用众所周知的温度$ f'(r_ \ text {h})/(4π)$满足KMS属性,其中$ r_ \ text {h h} $是Horizo​​n Radius。

We study the dynamics of an Unruh-DeWitt detector interacting with a massless scalar field in an arbitrary static spherically symmetric spacetimes whose metric is characterised by a single metric function $f(r)$. In order to obtain clean physical insights, we employ the derivative coupling variant of the Unruh-DeWitt model in (1+1) dimensions where powerful conformal techniques enable closed-form expressions for the vacuum two-point functions. Due to the generality of the formalism, we will be able to study a very general class of static spherically symmetric (SSS) background. We pick three examples to illustrate our method: (1) non-singular Hayward black holes, (2) the recently discovered $D\to 4$ limit of Gauss-Bonnet black holes, and (3) the "black bounce" metric that interpolates Schwarzschild black holes and traversable wormholes. We also show that the derivative coupling Wightman function associated with the generalized Hartle-Hawking vacuum satisfies the KMS property with the well-known temperature $f'(r_\text{H})/(4π)$, where $r_\text{H}$ is the horizon radius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源