论文标题

物联网使用新颖的频道增强和挤压CNN的物联网恶意软件检测体系结构

IoT Malware Detection Architecture using a Novel Channel Boosted and Squeezed CNN

论文作者

Asam, Muhammad, Khan, Saddam Hussain, Jamal, Tauseef, Khan, Asifullah

论文摘要

设备,人员和互联网之间的互动已经诞生了新的数字通信模型,即物联网(IoT)。这些智能设备的无缝网络是该物联网模型的核心。但是,另一方面,集成智能设备以构成网络会引入许多安全挑战。这些连接的设备创建了一个安全盲点,网络犯罪分子可以轻松发起攻击以使用恶意软件增殖技术损害设备。因此,恶意软件检测被认为是针对网络攻击的物联网设备生存的生命线。这项研究提出了一种新型的物联网恶意软件检测体系结构(IMDA),并使用挤压和增强卷积神经网络(CNN)。所提出的体系结构利用了边缘和平滑,多路的扩张卷积操作,通道挤压和CNN中的提升。边缘和平滑操作使用分裂转换 - 合并(STM)块,以提取恶意软件图像中的本地结构和较小的对比度变化。 STM块执行了多路扩张的卷积操作,这有助于识别恶意软件模式的全球结构。此外,频道挤压和合并分别有助于获得突出的减少和多样化的特征图。在初始,中和最终级别的STM块的帮助下,应用通道挤压和提升,以捕获纹理变化以及为恶意软件模式狩猎的深度。与自定义的CNN模型相比,所提出的体系结构显示出了实质性的性能。拟议的IMDA已达到准确性:97.93%,F1得分:0.9394,精度:0.9864,MCC:0。8796,召回:0.8873,AUC-PR:0.9689和AUC-ROC:0.9938。

Interaction between devices, people, and the Internet has given birth to a new digital communication model, the Internet of Things (IoT). The seamless network of these smart devices is the core of this IoT model. However, on the other hand, integrating smart devices to constitute a network introduces many security challenges. These connected devices have created a security blind spot, where cybercriminals can easily launch an attack to compromise the devices using malware proliferation techniques. Therefore, malware detection is considered a lifeline for the survival of IoT devices against cyberattacks. This study proposes a novel IoT Malware Detection Architecture (iMDA) using squeezing and boosting dilated convolutional neural network (CNN). The proposed architecture exploits the concepts of edge and smoothing, multi-path dilated convolutional operations, channel squeezing, and boosting in CNN. Edge and smoothing operations are employed with split-transform-merge (STM) blocks to extract local structure and minor contrast variation in the malware images. STM blocks performed multi-path dilated convolutional operations, which helped recognize the global structure of malware patterns. Additionally, channel squeezing and merging helped to get the prominent reduced and diverse feature maps, respectively. Channel squeezing and boosting are applied with the help of STM block at the initial, middle and final levels to capture the texture variation along with the depth for the sake of malware pattern hunting. The proposed architecture has shown substantial performance compared with the customized CNN models. The proposed iMDA has achieved Accuracy: 97.93%, F1-Score: 0.9394, Precision: 0.9864, MCC: 0. 8796, Recall: 0.8873, AUC-PR: 0.9689 and AUC-ROC: 0.9938.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源