论文标题
生成太阳样差速器旋转
Generation solar-like differential rotation
论文作者
论文摘要
我们分析了2021年Hotta&Kusano中显示的仿真结果,其中重现了太阳样的差异旋转。太阳正在用快速赤道和慢杆差异旋转。人们普遍认为,热对流保持差异旋转,但是最近的高分辨率模拟往往无法再现快速赤道。这个事实是太阳能物理学中最大的问题之一,称为对流难题。 Hotta&Kusano,2021年成功地重现了太阳样的差异旋转,而无需使用任何具有前所未有的高分辨率模拟的操纵。在这项研究中,我们分析了模拟数据,以了解快速赤道的维护机制。我们的分析得出的结论如下。 1。超级标准磁场是由压缩产生的,可以间接将大量的内部能量转换为磁能。 2。有效的小规模能量传输抑制了大规模的对流能量。 3。非泰勒 - proudman差异旋转由磁场增强的各向异性纬度能量转运所引起的熵梯度维持。 4。快速赤道由主要由麦克斯韦(Maxwell)应力引起的子午流量维持。麦克斯韦(Maxwell)的压力本身在快速近表面赤道的角动量传输中也起着作用(我们称其为打孔球效应)。模拟中的快速赤道并不是由于较低的Rossby数量制度,而是由于强烈的磁场。这项研究新发现了磁场在维持差旋流中的作用。
We analyze the simulation result shown in Hotta & Kusano, 2021 in which the solar-like differential rotation is reproduced. The Sun is rotating differentially with the fast equator and the slow pole. It is widely thought that the thermal convection maintains the differential rotation, but recent high-resolution simulations tend to fail to reproduce the fast equator. This fact is an aspect of one of the biggest problems in solar physics called the convective conundrum. Hotta & Kusano, 2021 succeed in reproducing the solar-like differential rotation without using any manipulation with unprecedentedly high-resolution simulation. In this study, we analyze the simulation data to understand the maintenance mechanism of the fast equator. Our analyses lead to conclusions that are summarized as follows. 1. Superequipatition magnetic field is generated by the compression, which can indirectly convert the massive internal energy to magnetic energy. 2. The efficient small-scale energy transport suppresses large-scale convection energy. 3. Non-Taylor--Proudman differential rotation is maintained by the entropy gradient caused by the anisotropic latitudinal energy transport enhanced by the magnetic field. 4. The fast equator is maintained by the meridional flow mainly caused by the Maxwell stress. The Maxwell stress itself also has a role in the angular momentum transport for fast near-surface equator (we call it the Punching ball effect). The fast equator in the simulation is reproduced not due to the low Rossby number regime but due to the strong magnetic field. This study newly finds the role of the magnetic field in the maintenance of differential rotation.