论文标题
与接口的正方形晶格上的二聚体模型
Dimer model on the square lattice with interface
论文作者
论文摘要
在此博览会中,我们考虑了具有部分非周期性边缘权重的无限正方形晶格上的二聚体问题,我们称之为带有界面的正方形晶格。特别是,我们计算逆Kasteleyn操作员的确切积分形式,并研究其在晶格不同区域的渐近行为,以获得对模型局部统计数据的一般理解。
In this exposition, we consider the dimer problem on an infinite square lattice with partially non-periodic edge weights, which we refer to as the square lattice with interface. In particular, we compute an exact integral form of the inverse Kasteleyn operator and study its asymptotics behavior in different regions of the lattice to gain a general understanding of the local statistics of the model.