论文标题
davis-wielandt-berezin半径不平等的不平等现象
Davis-Wielandt-Berezin radius inequalities of Reproducing kernel Hilbert space operators
论文作者
论文摘要
给出了在繁殖内核希尔伯特空间上定义的有限线性算子的戴维斯 - 韦兰特 - 贝雷辛半径的几个上边界和下边界。此外,获得了两个有界线性操作员的总和,涉及Berezin编号和Davis-Wielandt-Berezin Radius的不平等,即,如果$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a和$ b $是繁殖的,则是$ hilbert太空运营商,那么η(a)+η(b)+\ textbf {ber}(a^*b+b^*a),$ $ $η(\ cdot)$和$ \ textbf {ber}(\ cdot)$是davis-wielandt-berezin radius和berezin编号。
Several upper and lower bounds of the Davis-Wielandt-Berezin radius of bounded linear operators defined on a reproducing kernel Hilbert space are given. Further, an inequality involving the Berezin number and the Davis-Wielandt-Berezin radius for the sum of two bounded linear operators is obtained, namely, if $A $ and $B$ are reproducing kernel Hilbert space operators, then $$η(A+B) \leq η(A)+η(B)+\textbf{ber}(A^*B+B^*A),$$ where $η(\cdot)$ and $\textbf{ber}(\cdot)$ are the Davis-Wielandt-Berezin radius and the Berezin number, respectively.