论文标题
使用搜索数据推荐的模型不足的因果学习框架
A Model-Agnostic Causal Learning Framework for Recommendation using Search Data
论文作者
论文摘要
基于机器学习的推荐系统(RSS)已成为帮助人们自动发现自己的兴趣的有效手段。现有模型通常代表建议的丰富信息,例如项目,用户和上下文,将其嵌入向量并利用它们来预测用户的反馈。在因果分析的观点中,这些嵌入媒介和用户的反馈之间的关联是因果关系部分的混合物,描述了为什么用户首选项目的原因,以及仅反映用户和项目之间的统计依赖性的非因果部分,例如,公众意见,公众意见,表现出的位置,现有的差异,差异差异,差异是差异,而现有的差异差异,差异是差异,差异是差异,而差异却毫无疑问。使用这些嵌入向量时的零件。在本文中,我们提出了一个名为IV4REC的模型 - 不合骨框架,该框架可以有效地将嵌入向量分解为这两个部分,从而增强了建议结果。具体来说,我们在搜索方案和建议方案中共同考虑用户的行为。在因果分析中采用概念,我们将用户的搜索行为嵌入了仪器变量(IVS),以帮助分解推荐中的原始嵌入向量,即治疗。然后,IV4REC通过深层神经网络将这两个部分结合在一起,并使用组合的结果进行推荐。 IV4REC是模型不可替代的,可以应用于DIN和NRHUB等现有的许多RSS。对公共和专有工业数据集的实验结果表明,IV4REC始终增强RSS并超越共同考虑搜索和建议的框架。
Machine-learning based recommender systems(RSs) has become an effective means to help people automatically discover their interests. Existing models often represent the rich information for recommendation, such as items, users, and contexts, as embedding vectors and leverage them to predict users' feedback. In the view of causal analysis, the associations between these embedding vectors and users' feedback are a mixture of the causal part that describes why an item is preferred by a user, and the non-causal part that merely reflects the statistical dependencies between users and items, for example, the exposure mechanism, public opinions, display position, etc. However, existing RSs mostly ignored the striking differences between the causal parts and non-causal parts when using these embedding vectors. In this paper, we propose a model-agnostic framework named IV4Rec that can effectively decompose the embedding vectors into these two parts, hence enhancing recommendation results. Specifically, we jointly consider users' behaviors in search scenarios and recommendation scenarios. Adopting the concepts in causal analysis, we embed users' search behaviors as instrumental variables (IVs), to help decompose original embedding vectors in recommendation, i.e., treatments. IV4Rec then combines the two parts through deep neural networks and uses the combined results for recommendation. IV4Rec is model-agnostic and can be applied to a number of existing RSs such as DIN and NRHUB. Experimental results on both public and proprietary industrial datasets demonstrate that IV4Rec consistently enhances RSs and outperforms a framework that jointly considers search and recommendation.