论文标题
频谱自适应的常见空间模式
Spectrally Adaptive Common Spatial Patterns
论文作者
论文摘要
常见空间模式(CSP)的方法被广泛用于脑电图(EEG)数据的特征提取,例如在运动成像脑部计算机界面(BCI)系统中。这是一种数据驱动的方法,估计一组空间过滤器,因此对于一个运动图像类别,过滤后的脑电图信号的功率最大化并最小化了另一个机车。但是,这种方法容易过度拟合,并且众所周知,概括较差,尤其是在校准数据有限的情况下。此外,由于大脑数据的高异质性和大脑活动的非平稳性,通常会为每个用户分别训练CSP,从而导致长期校准或频繁的重新校准对用户累人。在这项工作中,我们提出了一种称为频谱适应性常见空间模式(SACSP)的新型算法,该算法通过学习每个空间滤波器的时间/光谱滤波器来改善CSP,以使空间过滤器集中在每个用户的最相关的时间频率上。与现有方法相比,我们显示了SACSP在提供从校准到在线控制的更高分类准确性方面的功效。此外,我们表明SACSP提供了有关过滤信号的时间频率的神经生理学相关信息。我们的结果突出了BCI用户之间的运动图像信号的差异以及每个类生成的信号的光谱差异,并以数据驱动的方式显示了学习鲁棒用户特定功能的重要性。
The method of Common Spatial Patterns (CSP) is widely used for feature extraction of electroencephalography (EEG) data, such as in motor imagery brain-computer interface (BCI) systems. It is a data-driven method estimating a set of spatial filters so that the power of the filtered EEG signal is maximized for one motor imagery class and minimized for the other. This method, however, is prone to overfitting and is known to suffer from poor generalization especially with limited calibration data. Additionally, due to the high heterogeneity in brain data and the non-stationarity of brain activity, CSP is usually trained for each user separately resulting in long calibration sessions or frequent re-calibrations that are tiring for the user. In this work, we propose a novel algorithm called Spectrally Adaptive Common Spatial Patterns (SACSP) that improves CSP by learning a temporal/spectral filter for each spatial filter so that the spatial filters are concentrated on the most relevant temporal frequencies for each user. We show the efficacy of SACSP in providing better generalizability and higher classification accuracy from calibration to online control compared to existing methods. Furthermore, we show that SACSP provides neurophysiologically relevant information about the temporal frequencies of the filtered signals. Our results highlight the differences in the motor imagery signal among BCI users as well as spectral differences in the signals generated for each class, and show the importance of learning robust user-specific features in a data-driven manner.