论文标题

源结构对复杂有机物排放的重要性。 I.从低质量到高质量原始恒星的观察$ _3 $ oh

Importance of source structure on complex organics emission. I. Observations of CH$_3$OH from low-mass to high-mass protostars

论文作者

van Gelder, M. L., Nazari, P., Tabone, B., Ahmadi, A., van Dishoeck, E. F., Beltrán, M. T., Fuller, G. A., Sakai, N., Sánchez-Monge, Á., Schilke, P., Yang, Y. -L., Zhang, Y.

论文摘要

经常观察到复杂的有机分子(COM),向嵌入式0类和I质体观察到。但是,并非所有级别的0级质体都表现出COM发射。在这项工作中,研究了甲醇(CH $ _3 $ OH)排放的变化,以测试是否缺乏CH $ _3 $ OH排放可以链接到源属性。研究了新的和档案的观察结果与文献的来源,并研究了184个低质量和高质量原恒星的样本。温暖(t> 100 K)气态CH $ _3 $ OH质量,$ M _ {\ rm ch_3oh} $,使用主要薄的同位素词来确定每个源。平均而言,I类ProtoStellar系统似乎比年轻的0级资源($ \ sim10^{ - 7} $ M $ _ _ \ odot $),似乎具有温暖的$ m _ {\ rm ch_3oh} $($ <10^{ - 10} $ m $ _ \ odot $)。我们的样本中的高质量来源显示更高的温暖$ m _ {\ rm ch_3oh} $最高$ 10^{ - 7} -10^{ - 3} $ m $ _ \ odot $。 To take into account the effect of the source's overall mass on $M_{\rm CH_3OH}$, a normalized CH$_3$OH mass is defined as $M_{\rm CH_3OH}/M_{\rm dust,0}$, where $M_{\rm dust,0}$ is the cold + warm dust mass within a fixed radius.除了上限外,一个简单的幂律适合归一化的温暖ch $ _3 $ oh asses导致$ m _ {\ rm ch_3oh}/m _ {\ rm dust,0} \ propto l _ {\ rm bol}^{0.70 \ pm0.055} $。这与一个简单的热核玩具模型非常吻合,该模型可以预测,由于雪地线向外移动,$ l _ {\ rm bol}^{0.75} $的标准化$ m _ {\ rm ch_3oh} $增加了。磁盘大小等效的来源比估计的100 K半径较小,与最佳拟合幂律模型非常吻合,而具有较大磁盘的来源显示出高达两个数量级的降低标准化的温暖ch $ _3 $ _3 $ OH质量。基于后者的结果,我们建议诸如磁盘之类的源结构会导致气体较冷,因此在气相中更少。此外,光学厚的灰尘可以隐藏com的发射。

Complex organic molecules (COMs) are often observed toward embedded Class 0 and I protostars. However, not all Class 0 and I protostars exhibit COMs emission. In this work, variations in methanol (CH$_3$OH) emission are studied to test if absence of CH$_3$OH emission can be linked to source properties. Combining both new and archival observations with ALMA and sources from the literature, a sample of 184 low-mass and high-mass protostars is investigated. The warm (T > 100 K) gaseous CH$_3$OH mass, $M_{\rm CH_3OH}$, is determined for each source using primarily optically thin isotopologues. On average, Class I protostellar systems seem to have less warm $M_{\rm CH_3OH}$ ($<10^{-10}$ M$_\odot$) than younger Class 0 sources ($\sim10^{-7}$ M$_\odot$). High-mass sources in our sample show higher warm $M_{\rm CH_3OH}$ up to $10^{-7}-10^{-3}$ M$_\odot$. To take into account the effect of the source's overall mass on $M_{\rm CH_3OH}$, a normalized CH$_3$OH mass is defined as $M_{\rm CH_3OH}/M_{\rm dust,0}$, where $M_{\rm dust,0}$ is the cold + warm dust mass within a fixed radius. Excluding upper limits, a simple power-law fit to the normalized warm CH$_3$OH masses results in $M_{\rm CH_3OH}/M_{\rm dust,0}\propto L_{\rm bol}^{0.70\pm0.05}$. This is in good agreement with a simple hot core toy model which predicts that the normalized $M_{\rm CH_3OH}$ increases with $L_{\rm bol}^{0.75}$ due to the snowline moving outward. Sources for which the size of the disk is equivalent or smaller than the estimated 100 K radius agree well with the best-fit power-law model, whereas sources with significantly larger disks show up to two orders of magnitude lower normalized warm CH$_3$OH masses. Based on the latter results, we suggest that source structure such as a disk can result in colder gas and thus fewer COMs in the gas phase. Additionally, optically thick dust can hide the emission of COMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源