论文标题

低模棱两可区:集成感应和通信系统中的理论界限和多普勒富序序列设计

Low Ambiguity Zone: Theoretical Bounds and Doppler-Resilient Sequence Design in Integrated Sensing and Communication Systems

论文作者

Ye, Zhifan, Zhou, Zhengchun, Fan, Pingzhi, Liu, Zilong, Lei, Xianfu, Tang, Xiaohu

论文摘要

在雷达传感和通信中,设计多普勒弹性序列(DRSS)具有较低的歧义函数,以延迟整个信号持续时间,而多普勒在整个信号带宽上的变化是一项极其艰巨的任务。但是,实际上,多普勒频率范围通常比传输信号的带宽小得多,并且相对容易获得准同步的延迟远小于整个信号持续时间。在这一观察结果的推动下,我们提出了一个称为低歧义区(LAZ)的新概念,该概念是由某些多普勒频率和延迟定义的相应歧义功能的一小部分。如果感兴趣的最大歧义值为零,则此类LAZ将减少到零歧义区(ZAZ)。在本文中,我们在具有和不具有光谱约束的单模型DRS的周期性LAZ/ZAZ上得出了一组理论界​​限,其中包括定期全局歧义功能作为特殊情况的现有界限。这些边界可以用作理论设计指南,以衡量针对多普勒效应的序列的最佳性。然后,我们基于一些代数工具,例如有限字段的字符和环状差异集,引入了DRS的四个最佳构造。

In radar sensing and communications, designing Doppler resilient sequences (DRSs) with low ambiguity function for delay over the entire signal duration and Doppler shift over the entire signal bandwidth is an extremely difficult task. However, in practice, the Doppler frequency range is normally much smaller than the bandwidth of the transmitted signal, and it is relatively easy to attain quasi-synchronization for delays far less than the entire signal duration. Motivated by this observation, we propose a new concept called low ambiguity zone (LAZ) which is a small area of the corresponding ambiguity function of interest defined by the certain Doppler frequency and delay. Such an LAZ will reduce to a zero ambiguity zone (ZAZ) if the maximum ambiguity values of interest are zero. In this paper, we derive a set of theoretical bounds on periodic LAZ/ZAZ of unimodular DRSs with and without spectral constraints, which include the existing bounds on periodic global ambiguity function as special cases. These bounds may be used as theoretical design guidelines to measure the optimality of sequences against Doppler effect. We then introduce four optimal constructions of DRSs with respect to the derived ambiguity lower bounds based on some algebraic tools such as characters over finite field and cyclic difference sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源