论文标题

测量分离的生成时空表示

Measuring disentangled generative spatio-temporal representation

论文作者

Zhao, Sichen, Shao, Wei, Chan, Jeffrey, Salim, Flora D.

论文摘要

解开的表示学习提供了有用的特性,例如降低维度和解释性,这对于现代深度学习方法至关重要。尽管深度学习技术已被广泛应用于时空数据挖掘,但很少关注进一步解除潜在特征并了解它们对模型性能的贡献,尤其是他们跨特征的相互信息和相关性。在这项研究中,我们采用了两种最先进的表示的表示方法,并将其应用于三个大规模的公共时空数据集。为了评估他们的绩效,我们提出了一个内部评估指标,重点介绍了学习表示的潜在变量之间的相关程度以及下游任务的预测性能。经验结果表明,我们修改的方法可以学习分离的表示,这些表示的表现与在时空序列预测问题中达到与现有的最新深度学习方法相同的性能水平。此外,我们发现我们的方法可用于发现现实世界的时空语义,以描述学习表示中的变量。

Disentangled representation learning offers useful properties such as dimension reduction and interpretability, which are essential to modern deep learning approaches. Although deep learning techniques have been widely applied to spatio-temporal data mining, there has been little attention to further disentangle the latent features and understanding their contribution to the model performance, particularly their mutual information and correlation across features. In this study, we adopt two state-of-the-art disentangled representation learning methods and apply them to three large-scale public spatio-temporal datasets. To evaluate their performance, we propose an internal evaluation metric focusing on the degree of correlations among latent variables of the learned representations and the prediction performance of the downstream tasks. Empirical results show that our modified method can learn disentangled representations that achieve the same level of performance as existing state-of-the-art ST deep learning methods in a spatio-temporal sequence forecasting problem. Additionally, we find that our methods can be used to discover real-world spatial-temporal semantics to describe the variables in the learned representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源