论文标题

强大的图表表示当地腐败恢复的学习

Robust Graph Representation Learning for Local Corruption Recovery

论文作者

Zhou, Bingxin, Jiang, Yuanhong, Wang, Yu Guang, Liang, Jingwei, Gao, Junbin, Pan, Shirui, Zhang, Xiaoqun

论文摘要

图表学习的性能受图形输入质量的影响。尽管现有的研究通常会追求全球平滑的嵌入,但我们认为很少观察到的异常对准确的预测有害。这项工作建立了一个图形学习方案,该方案自动检测(本地)损坏的特征属性并恢复用于预测任务的强大嵌入。检测操作利用图形自动编码器,该图形对当地损坏的分布没有任何假设。它指出了无偏见矩阵中异常节点属性的位置,其中通过促进正则器的稀疏性恢复了可靠的估计。优化器接近一个新的嵌入,该嵌入在帧域中稀疏,并有条件接近输入观测值。提供了广泛的实验来验证我们提出的模型可以从黑盒中毒中恢复强大的图表表示并获得出色的性能。

The performance of graph representation learning is affected by the quality of graph input. While existing research usually pursues a globally smoothed graph embedding, we believe the rarely observed anomalies are as well harmful to an accurate prediction. This work establishes a graph learning scheme that automatically detects (locally) corrupted feature attributes and recovers robust embedding for prediction tasks. The detection operation leverages a graph autoencoder, which does not make any assumptions about the distribution of the local corruptions. It pinpoints the positions of the anomalous node attributes in an unbiased mask matrix, where robust estimations are recovered with sparsity promoting regularizer. The optimizer approaches a new embedding that is sparse in the framelet domain and conditionally close to input observations. Extensive experiments are provided to validate our proposed model can recover a robust graph representation from black-box poisoning and achieve excellent performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源