论文标题

大地测量的Anosov流动,双曲线封闭的大地测量和稳定的磨性

Geodesic Anosov flows, hyperbolic closed geodesics and stable ergodicity

论文作者

Knieper, Gerhard, Schulz, Benjamin H.

论文摘要

在本文中,我们表明,只有存在$ c^2 $开放的Finsler指标,所有其封闭的大地测量学都是双曲线的,且仅当存在一个$ c^2 $开放式街区时,芬斯勒指标的大地测量流量是Anosov。对于Riemannian指标,此结果也成立。这是基于Contreras和Mazzucchelli的最新结果。此外,Riemannian或Finsler在表面上的测量流量是$ C^2 $稳定的,并且仅在它们是Anosov时。

In this paper we show that the geodesic flow of a Finsler metric is Anosov if and only if there exists a $C^2$ open neighborhood of Finsler metrics all of whose closed geodesics are hyperbolic. For surfaces this result holds also for Riemannian metrics. This follows from a recent result of Contreras and Mazzucchelli. Furthermore, geodesic flows of Riemannian or Finsler metrics on surfaces are $C^2$ stably ergodic if and only if they are Anosov.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源