论文标题
边界价值问题的概率学习推断,具有基于kullback-leibler差异的不确定性在隐式约束下
Probabilistic learning inference of boundary value problem with uncertainties based on Kullback-Leibler divergence under implicit constraints
论文作者
论文摘要
在第一部分中,我们对概率学习推断的一般方法进行了数学分析,该方法可以从先前的概率模型中估算随机边界值问题的后验概率模型。给定的目标是统计时刻,基本实现不可用。在这些条件下,使用kullback-leibler差异最小原理用于估计后概率度量。引入了代表约束的隐式映射的统计替代模型。给出了MCMC发电机和必要的数值元素,以促进在并行计算框架中实现该方法。在第二部分中,提出了一种应用来说明所提出的理论,因此,在微观和宏观分离的情况下,异质线性弹性介质对异质线性弹性介质的三维随机均质化的贡献也是如此。为了通过使用概率学习推论来构建后验概率度量,除了由随机有效弹性张量的给定统计矩定义的约束之外,还添加了随机部分差分方程的随机归一化残基的二阶矩;该限制保证了该算法试图使统计时刻更接近其目标,同时保留了少量残留物。
In a first part, we present a mathematical analysis of a general methodology of a probabilistic learning inference that allows for estimating a posterior probability model for a stochastic boundary value problem from a prior probability model. The given targets are statistical moments for which the underlying realizations are not available. Under these conditions, the Kullback-Leibler divergence minimum principle is used for estimating the posterior probability measure. A statistical surrogate model of the implicit mapping, which represents the constraints, is introduced. The MCMC generator and the necessary numerical elements are given to facilitate the implementation of the methodology in a parallel computing framework. In a second part, an application is presented to illustrate the proposed theory and is also, as such, a contribution to the three-dimensional stochastic homogenization of heterogeneous linear elastic media in the case of a non-separation of the microscale and macroscale. For the construction of the posterior probability measure by using the probabilistic learning inference, in addition to the constraints defined by given statistical moments of the random effective elasticity tensor, the second-order moment of the random normalized residue of the stochastic partial differential equation has been added as a constraint. This constraint guarantees that the algorithm seeks to bring the statistical moments closer to their targets while preserving a small residue.