论文标题
低级别近似值,$ 1/ε^{1/3} $ matrix-vector产品
Low-Rank Approximation with $1/ε^{1/3}$ Matrix-Vector Products
论文作者
论文摘要
我们研究基于Krylov子空间的迭代方法,用于在任何Schatten $ p $ Norm中的低级别近似值。在这里,通过矩阵向量产品访问矩阵$ a $,精度参数$ε$和目标等级$ k $,目标是找到一个rank-$ k $矩阵$ z $,带有正顺列,以便$ \ | | a(i -zz^\ top)\ | _ {s_p} \ leq(1+ε)\ min_ { $ m $。对于$ p = 2 $(frobenius norm)和$ p = \ infty $(光谱规范)的特殊情况,Musco和Musco(Neurips 2015)获得了基于Krylov方法的算法,该方法使用了$ \ tilde {o}(o}(o)可通过功率方法获得的依赖性,其中$ \ tilde {o} $抑制了poly $(\ log(dk/ε))$因子。 我们的主要结果是一种仅使用$ \ tilde {o}(kp^{1/6}/ε^{1/3})$ matrix-vector产品,并且适用于所有$ p \ geq 1 $的算法。对于$ p = 2 $,我们的界限改进了前一个$ \ tilde {o}(k/ε^{1/2})$绑定到$ \ tilde {o}(k/ε^{1/3})$。由于Schatten- $ p $和Schatten-$ \ infty $ norms的规范与$(1+ε)$相同 - 当$ p \ geq(\ log d)/ε$时,我们的限制恢复了Musco和Musco的结果$ p = \ infty $。此外,对于任何固定常数$ p \ geq 1 $,我们证明了$ω(1/ε^{1/3})$的矩阵向量查询下限,表明令人惊讶的是$ \tildeθ(1/ε^{1/3})$是常数〜$ k $的最佳复杂性。 为了获得我们的结果,我们介绍了几种新技术,包括同时对多个Krylov子空间进行优化,以及针对分区操作员的不平等现象。我们在[1,2] $中以$ p \的限制使用了Araki-lieb-thirring Trace不平等,而对于$ p> 2 $,我们呼吁对一致的分区操作员造成标准压缩不平等。
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm. Here, given access to a matrix $A$ through matrix-vector products, an accuracy parameter $ε$, and a target rank $k$, the goal is to find a rank-$k$ matrix $Z$ with orthonormal columns such that $\| A(I -ZZ^\top)\|_{S_p} \leq (1+ε)\min_{U^\top U = I_k} \|A(I - U U^\top)\|_{S_p}$, where $\|M\|_{S_p}$ denotes the $\ell_p$ norm of the the singular values of $M$. For the special cases of $p=2$ (Frobenius norm) and $p = \infty$ (Spectral norm), Musco and Musco (NeurIPS 2015) obtained an algorithm based on Krylov methods that uses $\tilde{O}(k/\sqrtε)$ matrix-vector products, improving on the naïve $\tilde{O}(k/ε)$ dependence obtainable by the power method, where $\tilde{O}$ suppresses poly$(\log(dk/ε))$ factors. Our main result is an algorithm that uses only $\tilde{O}(kp^{1/6}/ε^{1/3})$ matrix-vector products, and works for all $p \geq 1$. For $p = 2$ our bound improves the previous $\tilde{O}(k/ε^{1/2})$ bound to $\tilde{O}(k/ε^{1/3})$. Since the Schatten-$p$ and Schatten-$\infty$ norms are the same up to a $(1+ ε)$-factor when $p \geq (\log d)/ε$, our bound recovers the result of Musco and Musco for $p = \infty$. Further, we prove a matrix-vector query lower bound of $Ω(1/ε^{1/3})$ for any fixed constant $p \geq 1$, showing that surprisingly $\tildeΘ(1/ε^{1/3})$ is the optimal complexity for constant~$k$. To obtain our results, we introduce several new techniques, including optimizing over multiple Krylov subspaces simultaneously, and pinching inequalities for partitioned operators. Our lower bound for $p \in [1,2]$ uses the Araki-Lieb-Thirring trace inequality, whereas for $p>2$, we appeal to a norm-compression inequality for aligned partitioned operators.