论文标题

汉密尔顿周期的正方形在随机扰动图中

The square of a Hamilton cycle in randomly perturbed graphs

论文作者

Böttcher, Julia, Parczyk, Olaf, Sgueglia, Amedeo, Skokan, Jozef

论文摘要

我们在随机扰动图的模型中研究了汉密尔顿周期平方的外观,该模型对于给定的$α\ in(0,1)$,即任何$ n $ vertex图的结合,具有最低度$ a $ $αn$和二项式随机图$ g(n,p)$。当$α> 1/2 $ $时,这是已知的,我们确定在所有剩余情况下,即对于每种$α\ le 1/2 $的确切扰动阈值概率。我们证明,随着$α$在间隔$(0,1)$上的范围,阈值执行的“跳跃”数量可观。我们的结果对$ 2 $ universality的扰动阈值具有影响,我们还充分解决了所有开放式案例。

We investigate the appearance of the square of a Hamilton cycle in the model of randomly perturbed graphs, which is, for a given $α\in (0,1)$, the union of any $n$-vertex graph with minimum degree $αn$ and the binomial random graph $G(n,p)$. This is known when $α> 1/2$, and we determine the exact perturbed threshold probability in all the remaining cases, i.e., for each $α\le 1/2$. We demonstrate that, as $α$ ranges over the interval $(0,1)$, the threshold performs a countably infinite number of `jumps'. Our result has implications on the perturbed threshold for $2$-universality, where we also fully address all open cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源