论文标题
加权数量和分区的迹象行为
Signs behaviour of sums of weighted numbers of partitions
论文作者
论文摘要
让$ a $是积极整数的子集。按$ n $的$ a $分区,我们了解$ n $的表示形式,作为$ a $ a $的元素的总和。对于给定的$ i,n \ in \ n $,由$ c_ {a}(i,n)$,我们表示$ a $ n $的$ a $ n $的数量,恰好是$ i $零件。在论文中,我们获得了几个有关序列$ s_ {a,k}(n)= \ sum_ {i = 0}^{n}( - 1)^{i} i^{k} c_ {a} c_ {a}(a}(i,n)$,其中$ k \ in \ n $ nesive。特别是,我们证明,对于$ \ n _ {+} $的子集的广泛类$ \ cal {a} $,我们都有每个$ a \ in \ cal {a} $我们都有$(-1)^{n} s_ {n} s_ {a,k}(a,k}(a,k}(n)\ geq 0 $ for $ n $ n $ n,k n $ n,k n $ n $ n,k.
Let $A$ be a subset of positive integers. By $A$-partition of $n$ we understand the representation of $n$ as a sum of elements from the set $A$. For given $i, n\in\N$, by $c_{A}(i,n)$ we denote the number of $A$-partitions of $n$ with exactly $i$ parts. In the paper we obtain several result concerning sign behaviour of the sequence $S_{A,k}(n)=\sum_{i=0}^{n}(-1)^{i}i^{k}c_{A}(i,n)$, where $k\in\N$ is fixed. In particular, we prove that for a broad class $\cal{A}$ of subsets of $\N_{+}$ we have that for each $A\in \cal{A}$ we have $(-1)^{n}S_{A,k}(n)\geq 0$ for each $n, k\in\N$.