论文标题
翻译和旋转等效流(TRENF)以进行最佳宇宙学分析
Translation and Rotation Equivariant Normalizing Flow (TRENF) for Optimal Cosmological Analysis
论文作者
论文摘要
我们的宇宙是同质和各向同性的,其扰动遵守翻译和旋转对称性。在这项工作中,我们开发了翻译和旋转等效流(TRENF),这是一种生成归一流的流量(NF)模型,该模型明确结合了这些对称性,从而通过一系列傅立叶基于空间的卷积和像素智能的非线性变换来定义数据的可能性。 TRENF可直接访问高维数据的可能性P(X | Y)作为标签Y的函数,例如宇宙参数。与基于摘要统计数据的传统分析相反,NF方法没有信息丢失,因为它保留了数据的全面维度。在高斯随机字段上,TRENF的可能性与分析表达非常吻合,并饱和标签y中的Fisher信息含量。在N体模拟的非线性宇宙过度密度场上,TRENF导致对标准功率汇总统计量的约束功率的显着改善。 TRENF也是数据的生成模型,我们表明TRENF样品与所训练的N体模拟非常吻合,并且数据的逆映射与高斯白噪声在视觉上和各种汇总统计范围内都非常吻合:当这是完美地实现结果P(x | y)时,可能性分析变得最佳。最后,我们开发了该模型的概括,该模型可以处理破坏数据对称性的效果,例如调查蒙版,这可以对无周期性界限的数据进行可能分析。
Our universe is homogeneous and isotropic, and its perturbations obey translation and rotation symmetry. In this work we develop Translation and Rotation Equivariant Normalizing Flow (TRENF), a generative Normalizing Flow (NF) model which explicitly incorporates these symmetries, defining the data likelihood via a sequence of Fourier space-based convolutions and pixel-wise nonlinear transforms. TRENF gives direct access to the high dimensional data likelihood p(x|y) as a function of the labels y, such as cosmological parameters. In contrast to traditional analyses based on summary statistics, the NF approach has no loss of information since it preserves the full dimensionality of the data. On Gaussian random fields, the TRENF likelihood agrees well with the analytical expression and saturates the Fisher information content in the labels y. On nonlinear cosmological overdensity fields from N-body simulations, TRENF leads to significant improvements in constraining power over the standard power spectrum summary statistic. TRENF is also a generative model of the data, and we show that TRENF samples agree well with the N-body simulations it trained on, and that the inverse mapping of the data agrees well with a Gaussian white noise both visually and on various summary statistics: when this is perfectly achieved the resulting p(x|y) likelihood analysis becomes optimal. Finally, we develop a generalization of this model that can handle effects that break the symmetry of the data, such as the survey mask, which enables likelihood analysis on data without periodic boundaries.