论文标题

强烈的持久性和相关的单一理想力量

Strong persistence and associated prime of powers of monomial ideals

论文作者

Mafi, Amir, Saremi, Hero

论文摘要

令$ r = k [x_1,\ ldots,x_n] $为$ n $变量$ k $的$ n $变量,而$ i $是$ d \ d \ leq 2 $的单一理想。我们表明,$(i^{k+1}:i)= i^k $ for hast $ k \ geq 1 $,我们反驳了一个动机问题,该问题出现在\ cite [Question 2.51] {chhv}中,通过提供反例。同样,在这个反例中,我们对以下问题给出了负面答案,即无正方形的单一理想的深度功能是非侵扰的。

Let $R=K[x_1,\ldots, x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $I$ be a monomial ideal of degree $d\leq 2$. We show that $(I^{k+1}:I)=I^k$ for all $k\geq 1$ and we disprove a motivation question that was appeared in \cite[Question 2.51]{CHHV} by providing of a counterexample. Also, by this counterexample, we give a negative answer to the question that depth function of square-free monomial ideals are non-increasing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源