论文标题

沟通和电力网络管理的强大,深入和强化学习

Robust, Deep, and Reinforcement Learning for Management of Communication and Power Networks

论文作者

Sadeghi, Alireza

论文摘要

本论文开发了数据驱动的机器学习算法来管理和优化下一代高度复杂的网络物理系统,这些系统迫切需要开创性的控制,监视和决策方案,这些方案可以保证稳健性,可扩展性和情境意识。本文首先开发了有原则的方法,以使通用机器学习模型可靠地抵抗分布不确定性和对抗数据。特别的重点将放在参数模型上,其中一些训练数据被用于学习参数模型。开发的框架引起了人们的兴趣,尤其是当训练和测试数据从“略有不同”的分布中汲取时。然后,我们引入了分布强大的学习框架,以最大程度地减少通过Wasserstein距离量化的规定的歧义性训练分布的最坏情况的预期损失。后来,我们以这个强大的框架为基础,以设计强大的半监督学习对图形方法。本文的第二部分愿意完全释放下一代有线和无线网络的潜力,在该网络中,我们使用(深)强化学习方法设计了“智能”网络实体。最后,本文增强了电源系统的操作和控制。我们的贡献是对可再生能源和需求响应计划的可持续分配网格的贡献。为了说明意外情况和快速变化的可再生能源产生和负载消耗方案,我们特别将反应性电源补偿委托给了公用事业拥有的控制设备(例如电容器库),以及具有网络范围的分布式发电单元的智能逆变器。

This thesis develops data-driven machine learning algorithms to managing and optimizing the next-generation highly complex cyberphysical systems, which desperately need ground-breaking control, monitoring, and decision making schemes that can guarantee robustness, scalability, and situational awareness. The present thesis first develops principled methods to make generic machine learning models robust against distributional uncertainties and adversarial data. Particular focus will be on parametric models where some training data are being used to learn a parametric model. The developed framework is of high interest especially when training and testing data are drawn from "slightly" different distribution. We then introduce distributionally robust learning frameworks to minimize the worst-case expected loss over a prescribed ambiguity set of training distributions quantified via Wasserstein distance. Later, we build on this robust framework to design robust semi-supervised learning over graph methods. The second part of this thesis aspires to fully unleash the potential of next-generation wired and wireless networks, where we design "smart" network entities using (deep) reinforcement learning approaches. Finally, this thesis enhances the power system operation and control. Our contribution is on sustainable distribution grids with high penetration of renewable sources and demand response programs. To account for unanticipated and rapidly changing renewable generation and load consumption scenarios, we specifically delegate reactive power compensation to both utility-owned control devices (e.g., capacitor banks), as well as smart inverters of distributed generation units with cyber-capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源