论文标题
神经建筑搜索能节能始终在启动音频模型
Neural Architecture Search for Energy Efficient Always-on Audio Models
论文作者
论文摘要
始终在分类任务的移动和边缘计算设备需要节能的神经网络体系结构。在本文中,我们介绍了对神经体系结构搜索(NAS)的几次更改,这些更改改善了实际情况下成功的机会。我们的搜索同时优化了网络准确性,能源效率和内存使用情况。我们基准在实际硬件上进行搜索的性能,但是由于很难使用实际硬件进行数千个测试,因此我们使用随机的森林模型来大致预测候选网络的能源使用情况。我们提出了一种搜索策略,该策略同时使用贝叶斯和正规化的进化搜索与粒子群一起使用,并采用早期停滞以减轻计算负担。我们的搜索是根据音频集对声音事件分类数据集进行评估的,每次推理的能量的数量级少,并且与基准Mobilenetv1/V2实现相比,记忆足迹要小得多,同时略微提高了任务准确性。我们还展示了将2D频谱图与许多过滤器相结合的卷积如何导致用于音频分类的计算瓶颈,并且替代方法减少了计算负担,但牺牲了任务的准确性。
Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches (NAS) that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early-stopping to reduce the computational burden. Our search, evaluated on a sound-event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.