论文标题

非参数球形牛仔裤质量估计B-Splines

Non-Parametric Spherical Jeans Mass Estimation with B-splines

论文作者

Rehemtulla, Nabeel, Valluri, Monica, Vasiliev, Eugene

论文摘要

球形牛仔裤建模被广泛用于估算从星形簇到银河恒星光环再到星系簇的系统的质量谱。它从球形对称性和动力学平衡的假设下,从电势示踪剂的运动学中得出了累积的质量分布。我们考虑使用田间光环恒星在银河系外部绘制暗物质分布中的应用。我们提出了一种新型的非参数常规,用于通过将B-Splines拟合到Halo Star的速度和密度曲线来求解球形牛仔裤方程。尽管大多数实现都采用这些配置文件的参数形式,但B-Splines提供了具有分析衍生物的非参数拟合曲线。我们的例行程序以扁平的光环或出色的光盘和出色的凸起恢复了平衡系统的质量曲线(大多数半径的误差<〜10%)。来自Fire-2模拟的拿铁咖啡套件的非平衡,银河系样星系的测试表现良好(r <〜100 kpc的误差<〜15%)。我们还通过在相位空间协调Gaia的特征和DESI Milky Way调查的相位空间中施加选择功能和错误来创建拿铁套件的观察动机数据集。由此产生的不精确和不完整的数据要求我们引入基于MCMC的子例程,以从示踪剂种群中获得反vlove的密度和速度分散曲线。考虑到这些观察效应,牛仔裤质量估算的准确性保持在20%或更高的水平。

Spherical Jeans modeling is widely used to estimate mass profiles of systems from star clusters to galactic stellar haloes to clusters of galaxies. It derives the cumulative mass profile, M(<r), from kinematics of tracers of the potential under the assumptions of spherical symmetry and dynamical equilibrium. We consider the application of Jeans modeling to mapping the dark matter distribution in the outer reaches of the Milky Way using field halo stars. We present a novel non-parametric routine for solving the spherical Jeans equation by fitting B-splines to the velocity and density profiles of halo stars. While most implementations assume parametric forms for these profiles, B-splines provide non-parametric fitting curves with analytical derivatives. Our routine recovers the mass profiles of equilibrium systems with flattened haloes or a stellar disc and bulge excellently (<~ 10% error at most radii). Tests with non-equilibrium, Milky Way-like galaxies from the Latte suite of FIRE-2 simulations perform quite well (<~ 15% error for r <~ 100 kpc). We also create observationally motivated datasets for the Latte suite by imposing selection functions and errors on phase space coordinates characteristic of Gaia and the DESI Milky Way Survey. The resulting imprecise and incomplete data require us to introduce an MCMC-based subroutine to obtain deconvolved density and velocity dispersion profiles from the tracer population. With these observational effects taken into account, the accuracy of the Jeans mass estimate remains at the level 20% or better.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源