论文标题

蒲公英:基本功能的认证近似值

Dandelion: Certified Approximations of Elementary Functions

论文作者

Becker, Heiko, Tekriwal, Mohit, Darulova, Eva, Volkova, Anastasia, Jeannin, Jean-Baptiste

论文摘要

通常,不得在当今的数字计算机上精确地计算基本功能操作,例如SIN和EXP,因此必须近似。库功能中的标准近似值通常仅提供一组有限的精确度,并且对于许多应用程序而言,效率太小。根据有限的输入域和输出精度定制的多项式近似值可以提供出色的性能。实际上,Remez算法计算给定多项式程度的最佳近似值,但迄今尚未正式验证。 本文介绍了蒲公英,这是一种自动证书检查器,用于使用remez样算法计算出的基本功能的多项式近似值,该算法在HOL4定理供您中得到了充分验证。蒲公英检查多项式近似及其目标参考基本函数之间的差异是否低于给定约束中所有输入的给定误差。通过使用Cakeml编译器提取经过验证的二进制文件,蒲公英可以在合理的时间内验证证书,从而完全自动化以前的手动验证近似值。

Elementary function operations such as sin and exp cannot in general be computed exactly on today's digital computers, and thus have to be approximated. The standard approximations in library functions typically provide only a limited set of precisions, and are too inefficient for many applications. Polynomial approximations that are customized to a limited input domain and output accuracy can provide superior performance. In fact, the Remez algorithm computes the best possible approximation for a given polynomial degree, but has so far not been formally verified. This paper presents Dandelion, an automated certificate checker for polynomial approximations of elementary functions computed with Remez-like algorithms that is fully verified in the HOL4 theorem prover. Dandelion checks whether the difference between a polynomial approximation and its target reference elementary function remains below a given error bound for all inputs in a given constraint. By extracting a verified binary with the CakeML compiler, Dandelion can validate certificates within a reasonable time, fully automating previous manually verified approximations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源