论文标题

用于查找具有多项式系数的线性复发的确定和溶液的段落基础方法

The Factorial-Basis Method for Finding Definite-Sum Solutions of Linear Recurrences With Polynomial Coefficients

论文作者

Jiménez-Pastor, Antonio, Petkovšek, Marko

论文摘要

找到线性复发的非零解决方案的问题$ ly = 0 $,其中$ y $具有确定的超几何总和的形式,与[14] [14] [sec。 8],现在已经开放了三十年。在这里,我们提出了一种算法(在sagemath套件中实现),鉴于这种复发性和准三角形的,与移位的阶乘基础$ \ mathcal {b} = \ langle p_k(n)\ rangle_ {k = 0}特征零的$ \ mathbb {k} $,计算系数序列$ c = \ langle c_k \ rangle_ {k = 0}^\ infty $ y_n = y_n = \ sum_ = \ sum_ {k = 0} $ \ MATHCAL {B} $,在\ Mathbb {n} $中的每个$ n \)的正确终端总和。更一般而言,如果$ \ Mathcal {b} $是$ m $ - 在\ Mathbb {n} $中的某些$ m \中,我们的算法计算了系数$ c $ C $的$ M $ m $ sections of $ m $复发的系统。如果可以找到该系统的明确非零解决方案,我们将获得$ ly = 0 $的显式非零解决方案。

The problem of finding a nonzero solution of a linear recurrence $Ly = 0$ with polynomial coefficients where $y$ has the form of a definite hypergeometric sum, related to the Inverse Creative Telescoping Problem of [14][Sec. 8], has now been open for three decades. Here we present an algorithm (implemented in a SageMath package) which, given such a recurrence and a quasi-triangular, shift-compatible factorial basis $\mathcal{B} = \langle P_k(n)\rangle_{k=0}^\infty$ of the polynomial space $\mathbb{K}[n]$ over a field $\mathbb{K}$ of characteristic zero, computes a recurrence satisfied by the coefficient sequence $c = \langle c_k\rangle_{k=0}^\infty$ of the solution $y_n = \sum_{k=0}^\infty c_kP_k(n)$ (where, thanks to the quasi-triangularity of $\mathcal{B}$, the sum on the right terminates for each $n \in \mathbb{N}$). More generally, if $\mathcal{B}$ is $m$-sieved for some $m \in \mathbb{N}$, our algorithm computes a system of $m$ recurrences satisfied by the $m$-sections of the coefficient sequence $c$. If an explicit nonzero solution of this system can be found, we obtain an explicit nonzero solution of $Ly = 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源