论文标题

基于音频的深度学习框架,用于检测COVID-19

Audio-Based Deep Learning Frameworks for Detecting COVID-19

论文作者

Ngo, Dat, Pham, Lam, Hoang, Truong, Kolozali, Sefki, Jarchi, Delaram

论文摘要

本文评估了用于检测COVID-19的呼吸,咳嗽和语音的广泛基于音频的深度学习框架。通常,音频记录输入转换为低级光谱图,然后将它们馈入预训练的深度学习模型中,以提取高级嵌入功能。接下来,在使用轻梯度提升机(LightGBM)作为后端分类之前,这些高级嵌入功能的尺寸会降低。我们对第二个DICOVA挑战的实验分别达到了曲线下的最高面积,F1得分,灵敏度得分和特异性评分分别为89.03%,64.41%,63.33%和95.13%。基于这些分数,我们的方法优于最先进的系统,并将挑战基线提高4.33%,6.00%和8.33%,分别为AUC,F1分数和敏感性得分。

This paper evaluates a wide range of audio-based deep learning frameworks applied to the breathing, cough, and speech sounds for detecting COVID-19. In general, the audio recording inputs are transformed into low-level spectrogram features, then they are fed into pre-trained deep learning models to extract high-level embedding features. Next, the dimension of these high-level embedding features are reduced before finetuning using Light Gradient Boosting Machine (LightGBM) as a back-end classification. Our experiments on the Second DiCOVA Challenge achieved the highest Area Under the Curve (AUC), F1 score, sensitivity score, and specificity score of 89.03%, 64.41%, 63.33%, and 95.13%, respectively. Based on these scores, our method outperforms the state-of-the-art systems, and improves the challenge baseline by 4.33%, 6.00% and 8.33% in terms of AUC, F1 score and sensitivity score, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源