论文标题
通过生成对抗网络改善图像识别边缘缓存
Improving Image-recognition Edge Caches with a Generative Adversarial Network
论文作者
论文摘要
图像识别是几个移动应用程序中的必不可少的任务。例如,智能手机可以处理具有里程碑意义的照片,以收集有关其位置的更多信息。如果设备没有足够的计算资源,则将处理任务卸载到云基础架构中。尽管这种方法解决了资源短缺,但它引入了通信延迟。 Internet边缘上的图像识别缓存可以减轻此问题。这些缓存在靠近移动设备的服务器上运行,并存储有关先前识别图像的信息。如果服务器收到带有其高速缓存的照片的请求,它将回复设备,避免云下载。此缓存的主要挑战是验证接收到的图像是否匹配存储的图像。此外,对于户外照片,如果白天在白天拍摄而另一个在夜间拍摄,则很难比较它们。在这种情况下,缓存可能会错误地推断出它们指的是不同的位置,将处理的加载到云中。这项工作表明,众所周知的生成对抗网络称为《今甘》,可以通过使用夜间图像生成白天图像来解决此问题。因此,我们可以使用此翻译来填充一个可以帮助图像匹配的合成照片的缓存。我们表明,我们的解决方案减少了云下载,因此可以减少应用程序的延迟。
Image recognition is an essential task in several mobile applications. For instance, a smartphone can process a landmark photo to gather more information about its location. If the device does not have enough computational resources available, it offloads the processing task to a cloud infrastructure. Although this approach solves resource shortages, it introduces a communication delay. Image-recognition caches on the Internet's edge can mitigate this problem. These caches run on servers close to mobile devices and stores information about previously recognized images. If the server receives a request with a photo stored in its cache, it replies to the device, avoiding cloud offloading. The main challenge for this cache is to verify if the received image matches a stored one. Furthermore, for outdoor photos, it is difficult to compare them if one was taken in the daytime and the other at nighttime. In that case, the cache might wrongly infer that they refer to different places, offloading the processing to the cloud. This work shows that a well-known generative adversarial network, called ToDayGAN, can solve this problem by generating daytime images using nighttime ones. We can thus use this translation to populate a cache with synthetic photos that can help image matching. We show that our solution reduces cloud offloading and, therefore, the application's latency.