论文标题

晶格的下限覆盖了简单的密度

Lower Bounds on Lattice Covering Densities of Simplices

论文作者

Fu, Miao, Xue, Fei, Zong, Chuanming

论文摘要

本文通过研究Abelian Cayley Digraphs的度直径问题,为晶格提供了新的下限,覆盖了简单的密度。特别是,它证明了四面体的任何格子覆盖物的密度至少为$ 25/18 $,并且任何四维单纯形的晶格覆盖率的密度至少为$ 343/264 $。

This paper presents new lower bounds for the lattice covering densities of simplices by studying the Degree-Diameter Problem for abelian Cayley digraphs. In particular, it proves that the density of any lattice covering of a tetrahedron is at least $25/18$ and the density of any lattice covering of a four-dimensional simplex is at least $343/264$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源