论文标题

使用卷积神经网络从脑电图信号中的抓取和提升检测

Grasp-and-Lift Detection from EEG Signal Using Convolutional Neural Network

论文作者

Hasan, Md. Kamrul, Wahid, Sifat Redwan, Rahman, Faria, Maliha, Shanjida Khan, Rahman, Sauda Binte

论文摘要

患有神经肌肉功能障碍和截肢的肢体的人们需要自动的假体设备。在开发此类假体时,必须精确检测脑部运动动作,对于抓手(GAL)任务至关重要。由于脑电图(EEG)的低成本和非侵入性本质,在假体工具控制过程中检测运动动作是广泛优选的。本文从32通道EEG信号中自动化手动运动活动,即GAL检测方法。提出的管道本质上结合了预处理和端到端的检测步骤,消除了手工制作的功能工程的要求。预处理作用由原始信号denoising组成,使用离散小波变换(DWT),高通或带通滤波和数据标准化组成。检测步骤由卷积神经网络(CNN)或基于长期记忆(LSTM)模型组成。所有调查都利用了有六个不同的GAL事件的公开可用的EEG-GAL数据集。最佳实验表明,所提出的框架采用了基于DWT的Denoising滤波器,数据标准化和基于CNN的检测模型,在ROC曲线下达到了ROC曲线下的平均面积。获得的结果指定了引入的方法在检测EEG信号的GAL事件中的出色成就,将其适用于假肢,脑部计算机界面,机器人臂等。

People undergoing neuromuscular dysfunctions and amputated limbs require automatic prosthetic appliances. In developing such prostheses, the precise detection of brain motor actions is imperative for the Grasp-and-Lift (GAL) tasks. Because of the low-cost and non-invasive essence of Electroencephalography (EEG), it is widely preferred for detecting motor actions during the controls of prosthetic tools. This article has automated the hand movement activity viz GAL detection method from the 32-channel EEG signals. The proposed pipeline essentially combines preprocessing and end-to-end detection steps, eliminating the requirement of hand-crafted feature engineering. Preprocessing action consists of raw signal denoising, using either Discrete Wavelet Transform (DWT) or highpass or bandpass filtering and data standardization. The detection step consists of Convolutional Neural Network (CNN)- or Long Short Term Memory (LSTM)-based model. All the investigations utilize the publicly available WAY-EEG-GAL dataset, having six different GAL events. The best experiment reveals that the proposed framework achieves an average area under the ROC curve of 0.944, employing the DWT-based denoising filter, data standardization, and CNN-based detection model. The obtained outcome designates an excellent achievement of the introduced method in detecting GAL events from the EEG signals, turning it applicable to prosthetic appliances, brain-computer interfaces, robotic arms, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源