论文标题

多任务深度学习,用于脑血管疾病分类和MRI-PET翻译

Multi-task Deep Learning for Cerebrovascular Disease Classification and MRI-to-PET Translation

论文作者

Hussein, Ramy, Zhao, Moss, Shin, David, Guo, Jia, Chen, Kevin T., Armindo, Rui D., Davidzon, Guido, Moseley, Michael, Zaharchuk, Greg

论文摘要

精确定量脑血流量(CBF)对于诊断和评估脑血管疾病(例如莫亚马亚,颈动脉狭窄,动脉瘤和中风)至关重要。正电子发射断层扫描(PET)目前被视为人脑CBF测量的金标准。然而,由于其高昂的成本,电离辐射的使用和后勤挑战,宠物成像并不广泛可用,后勤挑战需要共定位的回旋子才能提供2分钟的半寿命氧气15放射性异位素。相比之下,磁共振成像(MRI)更容易获得,并且不涉及电离辐射。在这项研究中,我们提出了一个多任务学习框架,用于大脑MRITO-PET翻译和疾病诊断。提出的框架包括两个主要网络:(1)基于注意力的3D编码器卷积神经网络(CNN),该网络(CNN)合成了来自多控制MRI图像的高质量PET CBF图,以及(2)多尺度的3D CNN,可识别与输入MRI相对应的大脑疾病。我们的多任务框架在MRI-PET翻译的任务上产生了令人鼓舞的结果,在120名受试者的队列上,平均结构相似性指数(SSIM)为0.94,峰值信噪比(PSNR)为38dB。此外,我们表明,整合多种MRI模式可以改善脑部疾病的临床诊断。

Accurate quantification of cerebral blood flow (CBF) is essential for the diagnosis and assessment of cerebrovascular diseases such as Moyamoya, carotid stenosis, aneurysms, and stroke. Positron emission tomography (PET) is currently regarded as the gold standard for the measurement of CBF in the human brain. PET imaging, however, is not widely available because of its prohibitive costs, use of ionizing radiation, and logistical challenges, which require a co-localized cyclotron to deliver the 2 min half-life Oxygen-15 radioisotope. Magnetic resonance imaging (MRI), in contrast, is more readily available and does not involve ionizing radiation. In this study, we propose a multi-task learning framework for brain MRI-to-PET translation and disease diagnosis. The proposed framework comprises two prime networks: (1) an attention-based 3D encoder-decoder convolutional neural network (CNN) that synthesizes high-quality PET CBF maps from multi-contrast MRI images, and (2) a multi-scale 3D CNN that identifies the brain disease corresponding to the input MRI images. Our multi-task framework yields promising results on the task of MRI-to-PET translation, achieving an average structural similarity index (SSIM) of 0.94 and peak signal-to-noise ratio (PSNR) of 38dB on a cohort of 120 subjects. In addition, we show that integrating multiple MRI modalities can improve the clinical diagnosis of brain diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源