论文标题
学习从相关判断分布中排名
Learning to Rank from Relevance Judgments Distributions
论文作者
论文摘要
学习排名(LETOR)算法通常是在注释的Corpora上培训的,其中将单个相关标签分配给每个可用的文档主题对。在Cranfield框架内,相关标签是由合并多个专业策划或众包人类评估的。在本文中,我们探讨了如何使用分配给文档主题对而不是单值相关性标签的相关性判断分布(实际或合成生成)的LETOR模型。我们提出了五个新的概率损失功能,以处理相关判断分布提供的较高表达能力,并显示如何将它们应用于神经和GBM架构。此外,我们展示了在依靠传统或概率损失函数时,从某些概率分布中训练LETOR模型如何从某些概率分布的相关性判断的采样版本上提高其性能。最后,我们验证了关于现实世界中相关性判断分布的假设。总体而言,我们观察到,依靠相关性判断分布来培训不同的LETOR模型可以提高其性能,甚至超过强大的基线,例如Lambdamart在几个测试集中。
Learning to Rank (LETOR) algorithms are usually trained on annotated corpora where a single relevance label is assigned to each available document-topic pair. Within the Cranfield framework, relevance labels result from merging either multiple expertly curated or crowdsourced human assessments. In this paper, we explore how to train LETOR models with relevance judgments distributions (either real or synthetically generated) assigned to document-topic pairs instead of single-valued relevance labels. We propose five new probabilistic loss functions to deal with the higher expressive power provided by relevance judgments distributions and show how they can be applied both to neural and GBM architectures. Moreover, we show how training a LETOR model on a sampled version of the relevance judgments from certain probability distributions can improve its performance when relying either on traditional or probabilistic loss functions. Finally, we validate our hypothesis on real-world crowdsourced relevance judgments distributions. Overall, we observe that relying on relevance judgments distributions to train different LETOR models can boost their performance and even outperform strong baselines such as LambdaMART on several test collections.