论文标题

穿刺盘上的衍生几何形状和非线性微分方程

Derived Geometry and Non-Linear Differential Equations on the Punctured Disc

论文作者

Bouaziz, Emile

论文摘要

我们通过考虑其解决方案空间的自然派生增强,研究了刺穿形式盘的非线性微分方程。特别是,通过吸引逆论在变化的计算中的结果,我们表明,微分方程的变异公式是\ emph {等效},与残基配对诱导溶液中具有其切线配合物一定装饰的溶液衍生空间上的残基配对形式。

We study non-linear differential equations on the punctured formal disc by considering the natural derived enhancements of their spaces of solutions. In particular, by appealing to results of the inverse theory in the calculus of variations, we show that a variational formulation of a differential equation is \emph{equivalent} to the residue pairing inducing a (-1)-symplectic form on the derived space of solutions equipped with a certain decoration of its tangent complex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源