论文标题

基于轻量级自我注意的模型编码和解码的分层云

Hierarchical Point Cloud Encoding and Decoding with Lightweight Self-Attention based Model

论文作者

Puang, En Yen, Zhang, Hao, Zhu, Hongyuan, Jing, Wei

论文摘要

在本文中,我们介绍了SA-CNN,这是一种基于层次和轻量级自我注意的编码和解码体系结构,用于表示点云数据。提出的SA-CNN引入了卷积和转置卷积堆栈,以捕获和生成无序的3D点之间的上下文信息。按照常规的分层管道,以局部到全球的方式进行编码过程提取物特征,而解码过程则在粗到精细的多分辨率阶段生成特征和点云。我们证明了SA-CNN能够进行广泛的应用,即分类,部分分割,重建,形状检索和无监督分类。 SA-CNN在基准中实现最先进或可比性的性能,但其模型复杂性比其他模型低几个数量级。根据定性结果,我们可以在刚性对象以及可变形的非刚性人体和机器人模型上可视化多阶段云的重建和潜在步行。

In this paper we present SA-CNN, a hierarchical and lightweight self-attention based encoding and decoding architecture for representation learning of point cloud data. The proposed SA-CNN introduces convolution and transposed convolution stacks to capture and generate contextual information among unordered 3D points. Following conventional hierarchical pipeline, the encoding process extracts feature in local-to-global manner, while the decoding process generates feature and point cloud in coarse-to-fine, multi-resolution stages. We demonstrate that SA-CNN is capable of a wide range of applications, namely classification, part segmentation, reconstruction, shape retrieval, and unsupervised classification. While achieving the state-of-the-art or comparable performance in the benchmarks, SA-CNN maintains its model complexity several order of magnitude lower than the others. In term of qualitative results, we visualize the multi-stage point cloud reconstructions and latent walks on rigid objects as well as deformable non-rigid human and robot models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源