论文标题
合成数据还可以教授:为无监督的视觉表示学习的合成有效数据学习
Synthetic Data Can Also Teach: Synthesizing Effective Data for Unsupervised Visual Representation Learning
论文作者
论文摘要
对比度学习(CL)是一种自我监督的学习方法,可以从未标记的数据中有效地学习视觉表示。给定CL培训数据,可以培训生成模型以生成合成数据以补充实际数据。使用合成数据和实际数据进行CL训练有可能提高学会表示的质量。但是,合成数据通常比实际数据质量低,并且与使用真实数据相比,使用合成数据可能不会改善CL。为了解决这个问题,我们提出了一个数据生成框架,该框架采用两种方法来通过联合样本生成和对比度学习来改善CL培训。第一种方法为主要模型生成硬样品。与主模型共同学习发电机,以基于主模型的训练状态动力自定义硬样品。此外,提出了一对数据生成器来生成与正对相似但不同的样本。在联合学习中,通过降低它们的相似性,阳性对的硬度逐渐增加。多个数据集的实验结果显示了应用于CL的提出的数据生成方法的卓越精度和数据效率。例如,在Imagenet-100,CIFAR-100和CIFAR-10上分别观察到了约4.0%,3.5%和2.6%的线性分类精度。此外,还可以实现多达2倍的线性分类数据效率和最多可用于传输学习的数据效率。
Contrastive learning (CL), a self-supervised learning approach, can effectively learn visual representations from unlabeled data. Given the CL training data, generative models can be trained to generate synthetic data to supplement the real data. Using both synthetic and real data for CL training has the potential to improve the quality of learned representations. However, synthetic data usually has lower quality than real data, and using synthetic data may not improve CL compared with using real data. To tackle this problem, we propose a data generation framework with two methods to improve CL training by joint sample generation and contrastive learning. The first approach generates hard samples for the main model. The generator is jointly learned with the main model to dynamically customize hard samples based on the training state of the main model. Besides, a pair of data generators are proposed to generate similar but distinct samples as positive pairs. In joint learning, the hardness of a positive pair is progressively increased by decreasing their similarity. Experimental results on multiple datasets show superior accuracy and data efficiency of the proposed data generation methods applied to CL. For example, about 4.0%, 3.5%, and 2.6% accuracy improvements for linear classification are observed on ImageNet-100, CIFAR-100, and CIFAR-10, respectively. Besides, up to 2x data efficiency for linear classification and up to 5x data efficiency for transfer learning are achieved.