论文标题
Video2imu:现实的IMU功能和视频信号
Video2IMU: Realistic IMU features and signals from videos
论文作者
论文摘要
可穿戴传感器数据的人类活动识别(HAR)确定了不受约束的环境中的运动或活动。 HAR是一个具有挑战性的问题,因为它在主题之间呈现出很大的可变性。获取大量标记的数据并不直接,因为可穿戴的传感器信号在简单的人类检查后不容易标记。在我们的工作中,我们建议使用神经网络来生成现实的信号和人类活动单眼视频的特征。我们展示了如何利用这些生成的功能和信号,而不是它们的真实对应物来训练可以使用使用可穿戴传感器获得的信号识别活动的HAR模型。为了证明我们方法的有效性,我们对为改善工业工作安全而创建的活动识别数据集进行了实验。我们表明,我们的模型能够现实地生成虚拟传感器信号,并具有可用于训练具有可比性能的HAR分类器的功能,该性能是使用真实传感器数据训练的。我们的结果使得可以使用可用的,标记为训练HAR模型的视频数据来对可穿戴传感器进行分类。
Human Activity Recognition (HAR) from wearable sensor data identifies movements or activities in unconstrained environments. HAR is a challenging problem as it presents great variability across subjects. Obtaining large amounts of labelled data is not straightforward, since wearable sensor signals are not easy to label upon simple human inspection. In our work, we propose the use of neural networks for the generation of realistic signals and features using human activity monocular videos. We show how these generated features and signals can be utilized, instead of their real counterparts, to train HAR models that can recognize activities using signals obtained with wearable sensors. To prove the validity of our methods, we perform experiments on an activity recognition dataset created for the improvement of industrial work safety. We show that our model is able to realistically generate virtual sensor signals and features usable to train a HAR classifier with comparable performance as the one trained using real sensor data. Our results enable the use of available, labelled video data for training HAR models to classify signals from wearable sensors.