论文标题
人类胚胎的多ATLAS分割和空间比对在三个月3D超声
Multi-Atlas Segmentation and Spatial Alignment of the Human Embryo in First Trimester 3D Ultrasound
论文作者
论文摘要
超声(US)成像数据的分割和空间比对在头三个月获得的数据对于监测整个关键时期的人类胚胎生长和发育至关重要。当前的方法是手动或半自动的,因此非常耗时,容易出现错误。为了自动执行这些任务,我们提出了一个多ATLAS框架,用于使用最小的监督使用深度学习来自动分割和空间对齐胚胎。我们的框架学会了将胚胎注册到一个地图集,该地图集由在胎龄(GA)范围内获取的美国图像组成,分段并在空间上与预定义的标准方向保持一致。由此,我们可以得出胚胎的分割,并将胚胎放在标准方向上。使用在8+0到12+6周GA的美国图像,并选择了八个受试者作为地图集。我们评估了不同的融合策略以合并多个地图集:1)使用单个主题的地图集训练框架,2)使用所有可用地图集的数据训练框架,以及3)结合每个受试者训练的框架。为了评估性能,我们计算了测试集的骰子得分。我们发现,使用所有可用地图的训练框架优于结合的结构,并与对单个主题进行培训的所有框架中的最佳框架相比给出了类似的结果。此外,我们发现,在所有可用的地图中,从GA最接近的四个图像中选择图像,无论个人质量如何,都以0.72的中值骰子得分给出了最佳效果。我们得出的结论是,我们的框架可以准确地分割并在前三个月的美国图像中对胚胎进行空间对齐,并且对于可用公路中存在的质量变化是可靠的。
Segmentation and spatial alignment of ultrasound (US) imaging data acquired in the in first trimester are crucial for monitoring human embryonic growth and development throughout this crucial period of life. Current approaches are either manual or semi-automatic and are therefore very time-consuming and prone to errors. To automate these tasks, we propose a multi-atlas framework for automatic segmentation and spatial alignment of the embryo using deep learning with minimal supervision. Our framework learns to register the embryo to an atlas, which consists of the US images acquired at a range of gestational age (GA), segmented and spatially aligned to a predefined standard orientation. From this, we can derive the segmentation of the embryo and put the embryo in standard orientation. US images acquired at 8+0 till 12+6 weeks GA were used and eight subjects were selected as atlas. We evaluated different fusion strategies to incorporate multiple atlases: 1) training the framework using atlas images from a single subject, 2) training the framework with data of all available atlases and 3) ensembling of the frameworks trained per subject. To evaluate the performance, we calculated the Dice score over the test set. We found that training the framework using all available atlases outperformed ensembling and gave similar results compared to the best of all frameworks trained on a single subject. Furthermore, we found that selecting images from the four atlases closest in GA out of all available atlases, regardless of the individual quality, gave the best results with a median Dice score of 0.72. We conclude that our framework can accurately segment and spatially align the embryo in first trimester 3D US images and is robust for the variation in quality that existed in the available atlases.