论文标题

发现稀疏布尔网络中的非平衡固定特性

Uncovering the non-equilibrium stationary properties in sparse Boolean networks

论文作者

Torrisi, Giuseppe, Kühn, Reimer, Annibale, Alessia

论文摘要

一般而言,网络上相互作用单元的动态过程通常不均衡。在有向树的情况下,动态腔方法提供了一个有效的工具,该工具表征了线性阈值模型的过程的动态轨迹。但是,由于该方法的计算复杂性,该分析仅限于邻居数量最多的系统。我们设计了动态腔方法的有效实现,该方法大大降低了与离散耦合的系统的计算复杂性。我们的方法开辟了研究具有脂肪尾分布的网络的动态特性的可能性。我们利用这种新实施来研究非平衡稳态的特性。我们扩展了动态腔方法,以计算网络中不同基序引起的成对相关性。我们的结果表明,网络的两个基本基序能够准确地描述观察到的相关性的整个统计数据。最后,我们研究了在包含双向相互作用的网络上定义的模型。我们观察到,即使从对称分布中得出独立的相互作用条目,与与对称或反对称相互作用的网络相关的固定状态分别偏向于主动状态或不活跃状态。这种现象可以被视为自发对称性的一种形式,它是根据布尔变量而不是伊辛自旋而设计的系统。

Dynamic processes of interacting units on a network are out of equilibrium in general. In the case of a directed tree, the dynamic cavity method provides an efficient tool that characterises the dynamic trajectory of the process for the linear threshold model. However, because of the computational complexity of the method, the analysis has been limited to systems where the largest number of neighbours is small. We devise an efficient implementation of the dynamic cavity method which substantially reduces the computational complexity of the method for systems with discrete couplings. Our approach opens up the possibility to investigate the dynamic properties of networks with fat-tailed degree distribution. We exploit this new implementation to study properties of the non-equilibrium steady-state. We extend the dynamical cavity approach to calculate the pairwise correlations induced by different motifs in the network. Our results suggest that just two basic motifs of the network are able to accurately describe the entire statistics of observed correlations. Finally, we investigate models defined on networks containing bi-directional interactions. We observe that the stationary state associated with networks with symmetric or anti-symmetric interactions is biased towards the active or inactive state respectively, even if independent interaction entries are drawn from a symmetric distribution. This phenomenon, which can be regarded as a form of spontaneous symmetry-breaking, is peculiar to systems formulated in terms of Boolean variables, as opposed to Ising spins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源