论文标题
量子点系统中的远程电子电子相互作用以及量子化学中的应用
Long-range electron-electron interactions in quantum dot systems and applications in quantum chemistry
论文作者
论文摘要
在量子物理和化学的几种现象中,远程相互作用起着关键作用。为了研究这些现象,模拟量子模拟器为经典数值方法提供了一种吸引人的替代方法。已经建立了栅极定义的量子点作为量子模拟的平台,但是对于那些实验,电子之间的远程相互作用的效果并不起着至关重要的作用。在这里,我们介绍了在栅极定义的半导体量子点阵列中远程电子电子相互作用的第一个详细实验表征。我们证明了电子之间的显着相互作用强度,这些相互作用的强度最多可以四个地点分开,并表明我们对筛选效果的理论预测与实验结果非常匹配。基于这些发现,我们研究了可以将量子点阵列中的长距离相互作用用于人造量子物质的模拟模拟。我们从数值上表明,大约十个量子点足以观察到一维$ H_2 $类分子的结合。这些结合的实验和理论结果为未来的量子模拟铺平了道路,该量子阵列和量子化学中数值方法的基准。
Long-range interactions play a key role in several phenomena of quantum physics and chemistry. To study these phenomena, analog quantum simulators provide an appealing alternative to classical numerical methods. Gate-defined quantum dots have been established as a platform for quantum simulation, but for those experiments the effect of long-range interactions between the electrons did not play a crucial role. Here we present the first detailed experimental characterization of long-range electron-electron interactions in an array of gate-defined semiconductor quantum dots. We demonstrate significant interaction strength among electrons that are separated by up to four sites, and show that our theoretical prediction of the screening effects matches well the experimental results. Based on these findings, we investigate how long-range interactions in quantum-dot arrays may be utilized for analog simulations of artificial quantum matter. We numerically show that about ten quantum dots are sufficient to observe binding for a one-dimensional $H_2$-like molecule. These combined experimental and theoretical results pave the way for future quantum simulations with quantum dot arrays and benchmarks of numerical methods in quantum chemistry.