论文标题

Suslin同源性通过具有模量和应用的周期

Suslin homology via cycles with modulus and applications

论文作者

Binda, Federico, Krishna, Amalendu

论文摘要

我们表明,对于平稳的投射品种,$ k $上的$ x $以及降低的有效的卡地亚分割$ d \ subset x $,带有模量$ \ mathrm {ch} _0(x | d)$的0 cycles组的chow grout与SUSLIN同型$ H^s_0(x \ s_0 $ s $ deftersminus $ d)$ k $ K $ k $ K $ K $ K $ K $ K $ K $ K $ K $ K $ K $ K $我们得出了几个后果,并回答了Barbieri-Viale和Kahn的问题。

We show that for a smooth projective variety $X$ over a field $k$ and a reduced effective Cartier divisor $D \subset X$, the Chow group of 0-cycles with modulus $\mathrm{CH}_0(X|D)$ coincides with the Suslin homology $H^S_0(X \setminus D)$ under some necessary conditions on $k$ and $D$. We derive several consequences, and we answer to a question of Barbieri-Viale and Kahn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源