论文标题
Suslin同源性通过具有模量和应用的周期
Suslin homology via cycles with modulus and applications
论文作者
论文摘要
我们表明,对于平稳的投射品种,$ k $上的$ x $以及降低的有效的卡地亚分割$ d \ subset x $,带有模量$ \ mathrm {ch} _0(x | d)$的0 cycles组的chow grout与SUSLIN同型$ H^s_0(x \ s_0 $ s $ deftersminus $ d)$ k $ K $ k $ K $ K $ K $ K $ K $ K $ K $ K $ K $ K $ K $我们得出了几个后果,并回答了Barbieri-Viale和Kahn的问题。
We show that for a smooth projective variety $X$ over a field $k$ and a reduced effective Cartier divisor $D \subset X$, the Chow group of 0-cycles with modulus $\mathrm{CH}_0(X|D)$ coincides with the Suslin homology $H^S_0(X \setminus D)$ under some necessary conditions on $k$ and $D$. We derive several consequences, and we answer to a question of Barbieri-Viale and Kahn.