论文标题
3D $ \ MATHCAL {N} = 2 $ SO/USP伴奏SQCD:S-Confinement和精确识别
3d $\mathcal{N}=2$ SO/USp adjoint SQCD: s-confinement and exact identites
论文作者
论文摘要
我们研究3D $ \ MATHCAL {n} = 2 $ sqcd,具有符号和正交量规组以及伴随物质。对于$ USP(2N)$,带有两个基本面和$ SO(N)$带有一个矢量的$(N)$,这些模型最近已显示给S-Confine。在这里,我们通过将$ USP(2N)$与四个基本原理和反对称张量的限制联系起来,证实了该提案的有效性,使用了精确的数学结果,来自对壁球三个球的分区函数的分析。我们的分析使我们能够在存在线性单极超电球的情况下猜测更高数量的基本原理和矢量的新的S构造理论。然后,我们通过一系列伴随的解剖和S结合双重性来证明新二元性。
We study 3d $\mathcal{N}=2$ SQCD with symplectic and orthogonal gauge groups and adjoint matter. For $USp(2n)$ with two fundamentals and $SO(N)$ with one vector these models have been recently shown to s-confine. Here we corroborate the validity of this proposal by relating it to the confinement of $USp(2n)$ with four fundamentals and an antisymmetric tensor, using exact mathematical results coming from the analysis of the partition function on the squashed three-sphere. Our analysis allows us to conjecture new s-confining theories for a higher number of fundamentals and vectors, in presence of linear monopole superpotentials. We then prove the new dualities through a chain of adjoint deconfinements and s-confining dualities.