论文标题

非最少耦合向量场的Schwarzschild准正常模式

Schwarzschild quasi-normal modes of non-minimally coupled vector fields

论文作者

Garcia-Saenz, Sebastian, Held, Aaron, Zhang, Jun

论文摘要

我们研究了施瓦茨柴尔德黑人洞背景上的巨大和无质量矢量场的扰动,包括矢量场和曲率之间的非最小耦合。耦合由Horndeski矢量量操作员给出,如果矢量具有消失的背景值,我们也表明它是唯一的,也是唯一的。 我们确定了矢量场的准正常模式谱,重点是偶数和奇数均衡的单极和偶极扰动的基本模式,这是该场质量的函数以及控制非微相互作用的耦合常数。在无质量的情况下,我们还为前两个泛音提供了结果,特别表明,偶数和奇数模式之间的等光谱被非最小的重力耦合打破了。 我们还考虑了对应于准结合状态和静态配置的模式方程的解决方案。我们对准结合状态的结果为频谱的稳定性提供了有力的证据,这表明我们在设置中不可能建立矢量化机制。对于静态溶液,我们通过分析和数值得出电磁敏感性(潮汐爱数的自旋1类似物)的结果,在存在非最小偶联的情况下,我们表明这是非零的。

We study perturbations of massive and massless vector fields on a Schwarzschild black-hole background, including a non-minimal coupling between the vector field and the curvature. The coupling is given by the Horndeski vector-tensor operator, which we show to be unique, also when the field is massive, provided that the vector has a vanishing background value. We determine the quasi-normal mode spectrum of the vector field, focusing on the fundamental mode of monopolar and dipolar perturbations of both even and odd parity, as a function of the mass of the field and the coupling constant controlling the non-minimal interaction. In the massless case, we also provide results for the first two overtones, showing in particular that the isospectrality between even and odd modes is broken by the non-minimal gravitational coupling. We also consider solutions to the mode equations corresponding to quasi-bound states and static configurations. Our results for quasi-bound states provide strong evidence for the stability of the spectrum, indicating the impossibility of a vectorization mechanism within our set-up. For static solutions, we analytically and numerically derive results for the electromagnetic susceptibilities (the spin-1 analogs of the tidal Love numbers), which we show to be non-zero in the presence of the non-minimal coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源